
Software framework for geophysical data processing,
visualization and code development

by

Glenn Chubak

A Thesis Submitted to the College of
Graduate Studies and Research

in Partial Fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE
in

Geophysics
in the Department of Geological Sciences

University of Saskatchewan

Approved:

Dr. Igor Morozov, Thesis Advisor

Dr. Samuel Butler

Dr. Jim Merriam

Dr. Kevin Schneider, External Examiner

Dr. Kevin Ansdell (Chair)

ii

University of Saskatchewan

February 2009

© Copyright 2009

by

Glenn Chubak

All Rights Reserved

iii

Permission to Use and Disclaimer Statement

I hereby grant to University of Saskatchewan and/or its agents the non-exclusive license
to archive and make accessible, under the conditions specified below, my thesis,
dissertation, or project report in whole or in part in all forms of media, now or for the
duration of my copyright ownership. I retain all other ownership rights to the copyright of
the thesis, dissertation or project report. I also reserve the right to use in future works
(such as articles or books) all or part of this thesis, dissertation, or project report.

I hereby certify that, if appropriate, I have obtained and attached hereto a written
permission statement from the owner(s) of each third party copyrighted matter that is
included in my thesis, dissertation, or project report, allowing distribution as specified
below. I certify that the version I submitted is the same as that approved by my advisory
committee.

Reference in a thesis/dissertation to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement, recommendation, or favouring by the University of Saskatchewan. The
views and opinions of the author do not state or reflect those of the University of
Saskatchewan, and shall not be used for advertising or product endorsement purposes.

iv

TABLE OF CONTENTS

Software framework for geophysical data processing, visualization and code development
.. i

Acknowledgements ... vi

Table of Figures ... vii

List of Acronyms and Glossary ... x

1 Abstract ... 1

2 Introduction ... 2

2.1 Review of Existing Work ... 2

2.2 Structure of this thesis .. 3

3 Integrated software framework for processing of geophysical data 5

3.1 Introduction .. 5

3.2 SIA seismic and geophysical data processing system 6

3.3 Development ... 9

3.4 Parallelization ... 10

3.5 Graphical User Interface ... 12

3.6 Discussion and conclusions .. 15

3.7 Acknowledgments .. 15

4 Interactive 3D/2D visualization for geophysical data processing and interpretation 16

4.1 Introduction .. 16

4.2 Object image protocol .. 17

4.3 SIA 3D display server... 19

4.4 Custom displays and user interfaces ... 25

4.5 Discussion and further development .. 26

4.6 Conclusion .. 28

5 Automated maintenance of geophysical software from distributed web repositories
 29

6 Towards a comprehensive open-source system for geophysical data processing and
interpretation ... 33

6.1 Introduction .. 33

6.2 (Not only) Seismic processing system.. 35

6.3 Processing concept ... 35

v

6.4 Graphical User Interface ... 36

6.5 OpenGL/Qt 3D/2D display server .. 36

6.6 Integration with popular open-source software .. 42

6.7 Data processing and modeling web services .. 43

6.8 Development framework .. 43

6.9 Automated documentation, code distribution, and collaboration tools 44

6.10 Conclusion .. 45

7 Rebuilding a Regional Seismographic Network in Southern Saskatchewan 46

7.1 Introduction .. 46

7.2 Low-cost Internet seismograph .. 50

7.3 Towards a digital seismic network near Saskatoon .. 51

8 Low-cost continuous seismic acquisition utilizing open-source software 53

8.1 Introduction .. 53

8.2 Server .. 54

8.3 Relay ... 55

8.4 Clients ... 55

8.5 STA/LTA Event Detection ... 55

8.6 Current Installation ... 56

8.7 Conclusion .. 56

9 Discussion and Conclusions ... 57

8. References ... 58

9 Appendices ... 60

9.1 Appendix A. Job example: 2D ray tracing model and GMT base map in 3D
(Figure 2.4) ... 60

9.2 Appendix B. Interactive multi-threaded seismic processing (Figure 4.6) 66

vi

 Acknowledgements

I would like to thank my supervisor Igor Morozov for his commitment to teaching, his
enthusiasm as ideas spawned new projects, and perhaps most of all his patience while I
finished this thesis. I’d also like to thank Shannon Blyth for all of her hard work and
assistance with the programming, Capt. P. Lascelle of Dundurn Canadian Forces
Ammunition Depot for his support of the SMS monitoring station and other projects,
Brain Reilkoff for putting up with the strain I caused on the IT department and Don
Gendzwill for his numerous discussions and suggestions. My committee members have
given freely of their time, advice, and expertise – thanks you all. My wife of course is in
need of endless gratitude for the support and motivation (most of it good natured) she
provided and of course for caring for our children while I was so distracted on other
things. I never would have finished without her. To Kaylee and Samuel my incredible
children – you are both a wonderful blessing and a source of continual joy.

vii

Table of Figures
Figure 3.1 Structure of SIA processing flow, represented by class PROJECT (modified
after Morozov and Smithson, 1997). Processing flows consist of linked sequences of
tools sharing structured trace ensemble gathers (normally corresponding to
multicomponent seismic records), database tables, and various custom data objects. Non-
blocking PVM messages are used for communication of flow with GUI, other flows, and
services. Note that it has no predefined mechanism for propagating data along the
sequence of tools, and hence no dependence on data types. ... 7

Figure 3.2 Process submission module of GUI, showing machines available to user via
PVM, available task names, types of submission (e.g., via PVM or UNIX shell), and
formats of corresponding program calls. Tasks specify symbolic names of actions
requested by processing flows (Figure 1.1), such as: “master” (for master flow
processes), “compute” (embedded sub-flows), “psview” or “xview” (display
PostScript or interactive X-windows graphics, respectively), and others. By checking
appropriate lines in this list, flow can be executed on different host configurations
without changing its parameters. Note that machines listed in this view could represent
individual compute hosts or their groups. ... 11

Figure 3.3 Main SIA Graphical Interface window including: a) selectable tool packages,
b) tool library, c) multiple-job flow editor; d) parameterization of selected tool; e) job
monitor, and f) status line giving brief information about any item at which cursor is
pointing. Job in front of window (c) executes interactive 2-D gravity modeling, and job in
back performs 1-D synthetic seismic modeling using reflectivity method (Fuchs &
Müller, 1971). For a compact display, tool parameterizations can be hidden leaving only
one-line summaries that may change to display job progress (window c). Job flow editor
windows (c) also include tool bars providing flow-related functionality. 12

Figure 4.1 Simplified SIA process communication. The Graphical User Interface spawns
processing flows (boxes labelled “process”) and monitors their execution. If interactive
graphics is requested in a flow, it starts a new display server or connects to an already
running one. PVM supports two-way communication between the programs which may
run on different compute hosts. Grey arrows represent the job monitor PVM messages
(flows, data, signals) and black arrows – graphical objects (see text for discussion). 18

Figure 4.2 Image tree for a hypothetical Graphical User Interface designed by the user.
Each node corresponds to an object sent through the PVM communication pipe (black
arrows in Figure 4.1). Two copies of such a tree are maintained at both client (flow) and
display server sides (Figure 4.1). .. 19

Figure 4.3 Nested layouts for generation of complex co-ordinated displays. Here, the top-
level layout 1 is indicated by grey, lower-level layouts 2 and 3 – by white colour and
dashed contours, respectively. .. 20

Figure 4.4 Wide-angle crustal ray-tracing model from the ACCRETE wide-angle seismic
experiment (Morozov et al., 2001). Property editor allows switching between displays
shading using the P- and S-wave velocities, velocity ratios, or wireframe views. Red dots

viii

on the surface indicate the source-receiver midpoints. Coastline map is derived directly
from GMT databases. Note the editing controls in the Properties menu. Rotation sliders
(upper left) can be used for precise rotation around the vertical and horizontal axes. The
floating window (inset) summarizes the graphical elements (colours, lines, palettes) that
can also be edited in the Property editor. See Appendix A for job files used for this
display. .. 21

Figure 4.5 Display of a reflection-refraction shot seismic record. Variable-area wiggle
over variable-intensity amplitude display is selected. Note the interactive editing options
in the Property editor (lower left). GMT “jet” colour palette (originally re-implemented
from Matlab) are used for trace background. Note that over 40 preset palettes are
available in this tool, as well as throughout the system. ... 22

Figure 4.6 Emulation of the traditional continuous seismic record display. In this SIA job,
we load seismic data from files or network interface, subdivide them into segments and
display in a scrolling trace sequence (top in the right panel). For the most recent segment,
a time-variant spectrogram (middle) and amplitude spectrum (bottom) are also computed
and displayed simultaneously. In this example, buttons (bottom) are used to control the
data input. .. 23

Figure 4.7 Interactive 2D gravity modeling example. Several graphics objects (observed,
modelled, and residual gravity profiles, and the density model) are posted by gravity
modeling (grmod2) tool, and buttons added to illustrate the interactive functionality.
Colour palette is used to represent the densities or, optionally, the rock types. 27

Figure 5.1 Configuration of SIA software repositories. Note that only the root entry
points are shown as the web addresses. For example, the actual code server for the
selected line is http://chubak.ca/SIA/cs.php. The buttons below allow the
user to edit the list. .. 31

Figure 5.2 Choosing software components to update. Note that the components whose
names begin with a period are system libraries or configuration directories, and the rest
are plug-in processing tools (Morozov and Smithson, 1997). For each component, its
current and updated version numbers, and the source of the update are displayed. The
user can select some or all components which will be downloaded, compiled, and
installed. .. 32

Figure 6.1 Known locations of IGeoS downloads (red dots) from November 2006 to July
2007. Note that the map was produced using the GMT programs (Smith and Wessel,
1995) integrated in the package. ... 34

Figure 6.2 An example of interactive 3D visualization for potential-field interpretation.
The model shows the Precambrian basement in SE Saskatchewan coloured by air-
magnetic anomaly (copper colouring). The surface topography is highlighted using the
“sea-land” colour palette from GMT. Over 40 preset colour palettes are available, and
custom palettes (as well as colours, line styles, and lighting) can also be defined. 37

Figure 6.3 Wide-angle crustal ray-tracing model from the ACCRETE wide-angle seismic
experiment (Morozov et al., 2001). .. 38

ix

Figure 6.4 Display of a reflection-refraction shot seismic record. Variable-area wiggle
over variable-intensity amplitude display is selected. Note the interactive plotting options
in the Property editor (lower left). GMT “jet” colour palette (re-implemented from
Matlab) is used for trace background. ... 39

Figure 6.5 Continuous seismic record display. In this SIA job, we load seismic data from
files or network interface, subdivide them into segments and display in a scrolling trace
sequence. ... 40

Figure 6.6 3D seismic trace display with a floating object property window. 41

Figure 6.7 Sample page (section “Synthetics,” larger window) in the current library of
processing examples (http://seisweb.usask.ca/temp/examples). Such pages are generated
by tool ‘expert’ included in the processing flows executed on the server. The contents of
on of the sample flows are shown in the smaller window in Disco-like format. 43

Figure 7.1 Map of the Canadian National Seismograph Network (from Natural resources
Canada web site, http://earthquakescanada.nrcan.gc.ca). Note the gap in station coverage
across Saskatchewan. .. 47

Figure 7.2 Map of Canadian earthquakes (from Natural Resources Canada web site,
http://earthquakescanada.nrcan.gc.ca). ... 48

Figure 7.3 Display of earthquake-related information at the Department of Geological
Sciences, University of Saskatchewan. This live web-based TV display constantly shows
the recent global earthquakes, live seismograms from our SKBG station (Figure 5.5), as
well as presentations about the Earth, tectonics, and seismology. 49

Figure 7.4 Left: the seismic station during testing. Right: the seismograph assembly, with
its lid open. Thermal insulation and electrical bulbs are used for temperature control
during Saskatchewan winters. ... 50

Figure 7.5 Existing and proposed digital seismic stations near Saskatoon. 52

Figure 8.1 Seismic data network design ... 54

Figure 8.2 Esterhazy, SK event on Dec 23, 2007 recorded at station SKBG in Figure 2. 56

x

List of Acronyms and Glossary

1D, 2D, 3D One-, two, and three-dimensional, respectively
A/D Analogue-to-Digital signal converter
ASCII Standard for text encoding
AVO Amplitude Variation with Offset
DISCO Commercial seismic processing system by Cogniseis (now included in

Echos by Paradigm)
Focus Former name of seismic processing system Echos by Paradigm
FreeUSP Free Unix Seismic Processing system by Amoco
GIS Geographical Information System
GMT Generic Mapping Tools (software for mapping and graphics)
GPS Global Positioning System
GUI Graphical User Interface
HTML HyperText Mark-up Language
I/O Input/Output
IGeoS Integrated Geoscience Software (formerly called SIA; this name is used

in Chapters 1-6)
IRIS Incorporated Research Institutions for Seismology (U.S. university

consortium)
MPI Message Passing Interface (software parallelization library)
OpenGL Popular Open-source graphics library
OS Operating system
PAR4CH 4-channel seismic recording hardware by Symmetric Research
PC “Personal Computer”
ProMAX Commercial seismic processing system by Advance Geophysical (now

Halliburton Landmark)
PVM Parallel Virtual Machine (software parallelization library)
Qt Popular cross-platform graphics software library by Trolltech (currently

owned by Nokia)
RAID Redundant Array of Independent Disks
RAYINVR Popular 2-D wide-angle seismic ray-tracing program by Colin Zelt

(Rice University)
RSF Former name of Madagascar package
SAC Sesicmic Analysis Code (earthquake data analysis package by

Livermore national Lab)
SEGY, SEG-Y Society of Exploration Geophysicists exchange data file standard
SEP Stanford Exploration Project

xi

SEP3D New name of SEPlib package
SEPlib Stanford Exploration Project software package
SIA Old name of IGeoS package (1995-2006)
SIOSEIS Marine reflection package by Scripts Oceanographic Institution
SK Saskatchewan
SKBG UofS seismic monitoring station on Bergheim Road Geophysical test

site
SKWC UofS seismic monitoring station at White Cap Dakota First Nation
STA/LTA Short-time Average/ Long-time average – seismic arrival detection

algorithm
SU Seismic UNIX reflection processing software by Colorado School of

Mines, also called Seismic Un*x
TCP/IP Computer network protocol
UofS University of Saskatchewan
XML Extensible mark-up language

1

1 Abstract
IGeoS is an integrated open-source software framework for geophysical data processing
under development at the UofS seismology group. Unlike other systems, this processing
monitor supports structured multicomponent seismic data streams, multidimensional data
traces, and employs a unique backpropagation execution logic. This results in an unusual
flexibility of processing, allowing the system to handle nearly any geophysical data.

In this project, a modern and feature-rich Graphical User Interface (GUI) was developed
for the system, allowing editing and submission of processing flows and interaction with
running jobs. Multiple jobs can be executed in a distributed multi-processor networks and
controlled from the same GUI. Jobs, in their turn, can also be parallelized to take
advantage of parallel processing environments such as local area networks and Beowulf
clusters.

A 3D/2D interactive display server was created and integrated with the IGeoS
geophysical data processing framework. With introduction of this major component, the
IGeoS system becomes conceptually complete and potentially bridges the gap between
the traditional processing and interpretation software.

Finally, in a specialized application, network acquisition and relay components were
written allowing IGeoS to be used for real-time applications. The completion of this
functionality makes the processing and display capabilities of IGeoS available to multiple
streams of seismic data from potentially remote sites. Seismic data can be acquired,
transferred to the central server, processed, archived, and events picked and placed in
database completely automatically.

2

2 Introduction
Open-source software has become a significant and integral part of many computing
environments. The Linux operating system is perhaps the best known example and it is
used in nearly all markets by academics, industry and government. Geophysical software
however, has not seen the same level of open-source development and is still dominated
by commercial products from a few developers. IGeoS (formerly SIA) has been in
development for nearly 14 years as a batch-driven general processing package. It was
originally written to replace the commercial package Disco when it was no longer being
supported. The project grew into a full featured and robust system for geophysical use
but it lacked an interface, integrated display tools, parallel capability, and other modern
features that users expect. The goal was not to simply replicate commercial projects but
rather to find unique solutions to problems faced in ongoing research.

My work on the project has focused mostly on the display, user interaction, and software
updating components. First, a user interface was designed and implemented allowing
users to build processing flows, manage projects and access the electronic
documentation. Second, a generalized display tool was created to provide visualization
and interaction with the data. Finally, a number of other services were added to the
package, such as an automated update and code management feature and facilities for
transmitting and processing real time seismic data from remote sites.

As a result of the present effort, the whole concept and software implementation of
IGeoS were significantly enhanced, transforming it in to a versatile and convenient
framework for developing software for many geophysical applications. Examples of
current applications include 2D and 3D seismic and well-log processing, gravity
processing and inversion, earthquake data analysis, 1-, 2-, and 3D seismic waveform
modeling, travel-time modeling and inversion, and also continuous seismic monitoring
using remote Internet seismographs.

The complete IGeoS code, including all my contributions presented below, is available
for downloading, installation, and updates from server at http://seisweb.usask.ca/igeos.

2.1 Review of Existing Work
Numerous software projects both commercial and open-source have been created to meet
the needs of geophysicists. Yet, there is still a demand within the geophysical
community for software that is both easy to use and highly customizable. Commercial
software focuses on performing specific tasks within a consistent framework and
interface but is not easily adapted to non-standard practices. By contrast, most open-
source (geophysical) projects to date lack well-developed interfaces and are not broad
enough in their scopes to serve as primary tools for data processing and research.

Seismic Unix (SU) is perhaps the best-known open-source geophysical package. It was
developed and maintained by the Center for Wave Phenomena (CWP) consortium at the
Colorado School of Mines. It contains a large number of tools in a well-documented and
maintained package. Each tool is an independent UNIX program that must adhere to a

3

strict input/output structure as the data is passed using file pipes. The tools are arranged
by using standard UNIX shell scripts to organize data processing flows. While the
package is useful and broadly used, it is still missing an integrated user interface as well
as a consistent method for displaying and interacting with data. File pipes, inherently
unidirectional, do not easily allow for highly interactive processing flows as there is no
method for propagating changes to tools located earlier in the sequence. The file pipe
structure also makes it difficult to build a user interface that would be able to interact
with the tools concurrently.

Another well-known project is the Stanford Exploration Project library (SEPlib) currently
located at http://sepwww.stanford.edu/software/seplib/. It is similar to Seismic Unix in
basic design and it was actually the parent project to SU. File pipes are used to pass data
between different programs, which each serve as a processing tool. Programs must read
and write the specified format to be compatible with other SEPlib programs. Parallel
functions are available by using MPI to submit multiple copies of the processing flow
across a cluster of computers. SEPlib has been modified, to handle irregularly sampled
data commonly found in 3D seismic surveys, and is now called SEP3D. There are a few
graphical display programs and provision to produce plots using a library known as
‘vplot.’ Vplot, originally written by Dave Hale, allows the scaling and re-sampling of
vectors to improve the compatibility between different displays and printers.

Madagascar (formerly RSF) is a recent effort by Sergey Fomel to produce a geophysical
processing package designed for reproducible computing rather than production
processing. Its design was also inspired by SEPlib. Madagascar was designed in response
to difficulties that researchers have in reproducing scientific work when complex, multi-
stage software is involved. The problems are twofold. First, the exact sequence of
processing steps is rarely recorded, and second, new software versions may produce
different results. Madagascar (like most packages) is driven by scripts which can be
saved to preserve the exact processing sequence. To avoid changes to results from
software revisions Madagascar uses a test driven development model. This means that
when new code is written, a specification is first developed, and all developments and
changes to the code must meet that specification.

2.2 Structure of this thesis
This thesis presents author’s contributions to a fairly large and versatile software project
(IGeoS) and represents a compilation of the following publications:

Chapter 3 is based on Chubak and Morozov (2006a and b). In this Chapter, I present the
recent architecture of the IGeoS package, its goals and relation to other existing system.
In particular, I focus on the newly developed Graphical User Interface (GUI),
visualization, and parallelization capabilities.

Chapter 4 is based on my contribution to Morozov et al (in press). In this Chapter, I
describe the unique interactive, parallel, 3D visualization program that was derived from
the GUI above.

In Chapter 5, based on Chubak and Morozov (2007), I describe an automated system
code maintenance by using distributed web repositories.

4

Chapter 6 (Chubak et al, 2007a and b) emphasizes the new aspect of the package as a
framework for uniform geophysical code development and gives several advanced
examples of its application.

Chapter 7, based on Morozov et al. (2007), I present the rationale for seismic monitoring
in Saskatchewan and describe a highly automated, low-cost hardware and software
solution. The technical details of its implementation are further developed in Chapter 8
(Chubak and Morozov, 2008), where a complete system for seismic earthquake
monitoring currently operating at the UofS is described. This system is not directly
related to IGeoS package; however, it is currently working in close integration with it.

In each Chapter, the text of the original published paper is mostly preserved with the
corresponding changes made to section and figure numbering. The reference lists of all
publications are collated at the end of this thesis. Some images from the original papers
were modified.

Finally, Chapter 9 summarizes the general conclusions of this work and offers
recommendations for further development of this geophysical software project.

5

3 Integrated software framework for processing of
geophysical data

This Chapter is based on publications by Chubak and Morozov (2006a and b). These
papers describe the new architecture of the IGeoS package. Since this Thesis project has
started, this architecture has changed substantially from its initial design (Morozov and
Smithson, 1997). The SIA package was redesigned to using C++ as its core development
language, parallelized by using the Parallel Virtual Machine, switched to using dynamic
linking, and adapted to using Qt and interactive graphics. My development of a modern,
Qt-based graphical interface set the project unique among other academic, and even
commercial data processing systems. Furthermore, the package was extended to non-
seismic applications, such as gravity inversion and modeling and real-time data
acquisition. To reflect these changes, the package was recently renamed to IGeoS (for
Integrated GeoScience software), under which name it is being continuously developed.
These changes led to switching the emphasis from the “wide-angle seismic processing
system” (Morozov and Smithson, 1997) to a much broader framework for geophysical
data processing. This change of viewpoint became possible largely to the contributions
from the present thesis, summarized in the Chapter below.

3.1 Introduction
Analysis of geophysical data nearly always involves application of sophisticated and
multi-stage processing and inversion. With volumes of data and resolution of the datasets
exploding in the recent years in nearly every field, the demand for computer packages
facilitating handling, processing, analysis, and interpretation of large and complex
datasets is growing. This particularly applies to exploration seismology, where
development of processing packages has grown into a thriving industry. A number of
integrated software systems, mostly specialized and streamlined for reflection seismic
data, are available.

Although highly advanced, commercial processing packages are still built for specialized
industry users. For a broader geophysical community, reliance on such software may not
be satisfactory for several reasons. First, while being highly efficient in their primary
fields of application (typically, 2- or 3-D common mid-point reflection data processing),
commercial packages could become awkward in handling other types of data. Examples
from seismology include wide-aperture reflection-refraction or earthquake data, where
native support for flexible, multi-component processing, spherical-Earth geometry, and
travel-time analysis is critical. Second, commercial packages often require installation of
other systems (e.g., databases or rendering systems) whose support could be difficult or
expensive in a University environment. And finally, licensing costs are often prohibitive,
particularly when utilizing large multi-processor computer systems.

Open-source seismic processing provides a low-cost alternative to commercial software
and, with an appropriately directed development, an ability to adapt to the changing
research needs. The best-known examples of such kind are Stanford Exploration Project
(SEP) software, SIOSEIS (http://sioseis.ucsd.edu/), and Seismic Un*x, a free reflection
processing system developed at the Colorado School of Mines (Stockwell, 1999).

6

Seismic Un*x has been broadly used in research and teaching seismology (e.g.,
Templeton & Gough, 1998) and also in smaller-scale seismic processing in the industry.
However, all these packages are still strongly optimized for reflection processing, and
their ability to handle more complex datasets is limited. Examples of such complex
datasets commonly encountered in refraction and earthquake seismology include
multicomponent, variable-length and sampling interval seismic records combined travel
times and amplitudes. Crustal wide-angle seismology requires an ability to account for
the Earth’s curvature during data processing and in some cases uses thousands of files for
data input. In a broader perspective, a system that could handle borehole logs, potential-
field data, velocity and gravity models, and offer improved PostScript rendering
capabilities would help to integrate the data analysis and reduce the need for data
reformatting.

Here, we present our ongoing development of a system providing the flexibility, and
functionality that are found neither in Seismic Un*x nor commercial packages. The
system, called SIA (no spelling out available!), was initially developed at the University
of Wyoming and continued at the University of Saskatchewan
(http://seisweb.usask.ca/SIA). It represents a decade of extensive efforts for integration
of academic-style seismic data analysis with the polish and performance of a commercial
seismic processor.

The guiding principle of SIA design is decentralization of processing and its abstraction
from the content of the character of the particular seismic and geophysical dataset. With
the recent modifications of the system, this idea was carried further, to an introduction of
dynamic linking, conversion to C++, parallelization, and integration with a Graphical
User Interface (GUI). In the following, we describe the development of the package since
the previous publications (Morozov and Smithson, 1997; Morozov, 1998). We start with
a brief recast of the key design concepts and emphasize the new parallel and GUI
functionalities.

3.2 SIA seismic and geophysical data processing system
Initially, SIA started as a replacement for Cogniseis’s DISCO processing system to
provide a means to use many modules written by the students of the Program for Crustal
Studies at the University of Wyoming. Consequently, its key design requirements were
typical of massive reflection seismic processing: 1) high throughput achieved by
processing tools (modules) operating in a common address space, with custom
executables built for each job, 2) seismic processing sequences (“jobs”) described using a
specialized scripting language and executed in (normally) unattended processes, and 3) a
multi-user development and processing environment. In addition, several extensions of
the reflection data processing model were made, and particularly, original
backpropagation execution logic was introduced (Morozov and Smithson, 1997). The
system supported (as it does now) processing scripts similar to those of DISCO.

The structure of an SIA data processing flow, implemented as C++ class named
PROJECT, is shown schematically in Figure 1.1.

7

Figure 3.1 Structure of SIA processing flow, represented by class PROJECT (modified after Morozov

and Smithson, 1997). Processing flows consist of linked sequences of tools sharing structured
trace ensemble gathers (normally corresponding to multicomponent seismic records),
database tables, and various custom data objects. Non-blocking PVM messages are used for
communication of flow with GUI, other flows, and services. Note that it has no predefined
mechanism for propagating data along the sequence of tools, and hence no dependence on
data types.

Several tools are arranged in a sequence according to the processor’s requirements. Each
of the tools corresponds to a C++ class (referred to as “module” by Morozov and
Smithson, 1997) implementing the “Edit Phase” (parameter input) and “Process Phase”
(trace processing) methods. These are the only two methods required for seismic
processing. Additional methods (such as providing dynamically changing tool names or
progress indicators) can be implemented by the modules requiring closer integration with
the GUI. The modules can also post their objects (such as velocity models) for their use
by other modules in the flow. In addition, the modules have access to globally visible
C++ objects providing the SIA system monitor, database, and the Parallel Virtual
Machine (PVM) functionalities. All these classes are stored in precompiled object
libraries and linked dynamically from shared libraries when the flow is built and started
from the GUI or a batch script.

Unlike traditional seismic processing systems (e.g., DISCO, ProMAX, SEPlib, SIOSEIS,
or Seismic Un*x) the system has no special input modules and expects no trace data at its
input. Some tools (such as performing database operation or plotting) do not perform any
operations with the traces, and the corresponding modules do not need to implement the
Process Phase. This makes the system more flexible, making it a useful framework for

8

more than just seismic data.

From any module, seismic traces are accessed by contacting the monitor via
SIA.input() and SIA.output() methods. These methods return pointers to the
structured input and output trace data gathers shared by the adjacent tools (Fig. 1.1; cf.
Morozov and Smithson, 1997). The flow monitor takes no part in moving the traces
through the tool sequence, and the modules are free to modify the states of both of their
inputs and outputs. This could result in data propagation pattern within the flow that
could become elaborate (Morozov, 1998); however, for a typical single-trace filtering
operation used in most seismic tools, the Process Phase code is quite straightforward:

 boolean FILTER::process() {
 TRACE *t = SIA.input()->pass_trace(SIA.output());
 if (t) {
 filter(t);
 return OK;
 }
 return FAIL;
}

Here, pass_trace(…) method transfers the trace to the output of the tool, return
OK statement informs the monitor that the module has produced an output, and return
FAIL is used to request more input data (Morozov and Smithson, 1997). The seismic
trace is represented by an object of class TRACE that provides access to all of its
formatting, data, and header information. Trace headers are free-format and are fully
customizable by the user (Morozov and Smithson, 1997). The method
filter(TRACE*) above should implement the desired filtering of trace t.

The operation of the monitor is independent of the character of the data being processed
and can be briefly summarized as follows (Morozov and Smithson, 1997). When the job
is started, all data gathers are emptied and the modules are called recursively in reverse
order, starting from the last one to the module currently marked with the “end-of-file”
flag. Once a module returns OK (as in the example above), the process is repeated again
from the end of the flow. If all modules return FAIL, the end-of-file flag is moved to the
next (end-of-file) module, and the process is repeated until no modules produce any
outputs. This simple scheme resembling the backpropagation inference engine of the
programming language PROLOG maintains the minimum possible number of traces in
the data buffers and allows the modules to fully control the data flow and termination of
the process.

Because the sequence of tool invocations in SIA is driven by a logical inference
mechanism rather than by the input data, no restrictions on the types of data or character
of processing are imposed. Data can be loaded, removed, or directed backward in the
processing sequence, or the flow could operate without input data at all. In the course of

9

its use in several areas of geophysics (mainly wide-aperture, reflection, and teleseismic
seismology, and recently 3-D potential fields), data types were considerably generalized
and several additional system features were implemented (Figure 1.1):

1) Variable data formats, sampling intervals, record lengths and time starts.

2) “Traces” can now contain linear arrays (seismic records) or 2- and 3-D arrays
(multicomponent seismic records, or 2-D grids used in potential field processing).

3) “Tools” can be represented by binary codes or macro-commands combining
groups of other tools with coherent parameterization optimized for a particular
task, Macro-commands can be defined by any user.

4) Graphics subsystem for rendering complex images in PostScript and building
custom Graphical User Interfaces;

5) Extensive use of command line, trace headers, and an integrated job text
preprocessor for flexible tool parameterization.

6) Maintenance utilities including automatically generated HTML documentation
and tools for generation of macro-commands and processing examples (see
http://seisweb.usask.ca/SIA/examples/).

7) Web service allowing execution of complex custom flows on remote systems and
providing software updates. This service was developed after the initial version of
this paper was submitted and is described in a separate paper (see
http://seisweb.usask.ca/SIA/ws.php; Morozov et al., 2007).

3.3 Development
Addition of new tools into the generalized processing framework (Figure 1.1) fills it with
the content for the particular area of application. Compared to the original version
(Morozov and Smithson, 1997), code development for the system was significantly
simplified, mainly due to the use of C++ encapsulation and inheritance, dynamic linking,
and improved maintenance and documentation support. The addition of new tools does
not require any modification of the monitoring program and can be done by the users.
Graduate Geophysics students at the University of Saskatchewan now routinely
contribute new tools as parts of their class projects. Code templates are available for the
basic methods of data handling, such as one trace in – one trace out, a buffered single
gather, or a sliding trace window (see http://seisweb.usask.ca/SIA/examples/templates/).

Although the old code based on the C language (Morozov and Smithson, 1997) is still
fully supported, we use the C++ model for all new development. In this model, an SIA
tool named, for example, mytool is described by a “parameter definition file”
mytool.mpar. This file contains descriptions of all module’s parameters,
documentation, C++, C, or Fortran codes or object libraries used for its building. This file
is used by a system utility to generate the corresponding UNIX make file, resolve library
dependencies, and to create both HTML pages and the on-line documentation displayed
by the GUI.

10

Apart from mytool.mpar, a single C++ file containing the C function void
*mytool_init() must also be provided. This function is called once during flow
initialization and returns a pointer to the module’s data object. Normally, it simply
returns new MYTOOL, where class MYTOOL is derived from a base class SIA_MODULE
and overloads (if needed) two of its methods:

1) int MYTOOL::edit() – the Edit Phase performing parameter input. It returns
an integer status specifying whether the module needs to be called during the
Process or end-of-file Phases,

2) boolean MYTOOL::process()- the Process Phase called when data objects
are propagated through the flow, as described above.

To implement the two methods, no knowledge about the monitor operation or presence of
other tools is required. Along with MYTOOL class, any number of other C/C++, or Fortran
codes can be included and placed into the shared module library. Libraries of C and
Fortran subroutines and C++ classes (such as performing Fourier transforms, filtering,
Least Squares inversion, and implementing complex arithmetic and Matlab-like matrix
manipulations) are provided to facilitate development. In our experience, a student
familiar with C++ can usually develop a reasonably complex tool in several days,

The configuration of the system allows maintaining multiple versions of the binaries for
different computer architectures from a single set of source codes. In such a way, the
system was supported at the University of Wyoming and Rice University under Sun
Solaris, 32- and 64-bit SGI Irix, and recently under 32- and 64-bit Red Hat Enterprise
Linux at the University of Saskatchewan.

Accumulation and exchange of processing expertise is as important for working on
complex research projects as algorithm development, particularly in an educational
environment. To date, a limited support for systematic documentation is facilitated in SIA
by a special tool posting fragments of job scripts in a common database. Any user can
select a portion of a processing flow, specify a name and a category for the example, and
post it where it can be viewed by others (http://seisweb.usask.ca/SIA/examples). Similar
tools create macro-commands and build a library of standard default configurations for
the various tools. In addition, processing examples can be simply cut and pasted from, for
example, an Internet browser or email.

3.4 Parallelization
The complete processing flow objects can be copied across the PVM interface (Figure
1.1) and executed separate processes on the same or remote hosts. This is the normal
mode of GUI operation on multiprocessor subsystems (below), in which all of the
computationally-intensive data processing is performed on remote compute servers
without overloading the GUI host. Some tools (such as flow, used to organize parallel
processing; see http://seisweb.usask.ca/SIA/modules/flow/mod.html) spawn groups of
processing sub-flows of their own. All processes communicate between each other and
with the GUI using printf(…) – like messages facilitated by the SIA PVM interface.
Along with these messages, the processes also exchange data traces, database tables, and

11

other objects. Execution of the processes is asynchronous, with message queuing and
retrieval handled by PVM libraries.

Due to encapsulation of the entire processing in a single PROJECT object (Figure 1.1),
sub-flows can also be invoked as parts of specialized algorithms. For example, such sub-
flows were used to implement custom processing within the loop of generalized pre-stack
seismic migration (Morozov and Dueker, 2003).

In order to manage submissions of specialized remote processes, an additional layer of
abstraction was created. The user is allowed to define groups of compute hosts and
applications assigned to the execution of specific tasks, such as running sub-flows,
performing interactive displays, or creating log files. As a result, the tools do not have to
specify the exact host and program names but use these task names in order to invoke
these applications. For example, depending on the user’s definition of “psview”, a
request for a psview executes ghostview, kghostview, display, or other
PostScript viewing programs on different hosts. In a classroom setting, this technique
could provide a near-synchronous cloning of displays on multiple computer screens.
Also, parallel jobs can be easily reconfigured for using fewer or more nodes without any
changes in their parameters, simply by changing the submission configuration (Figure
1.2).

Figure 3.2 Process submission module of GUI, showing machines available to user via PVM,

available task names, types of submission (e.g., via PVM or UNIX shell), and formats of
corresponding program calls. Tasks specify symbolic names of actions requested by
processing flows (Figure 1.1), such as: “master” (for master flow processes), “compute”
(embedded sub-flows), “psview” or “xview” (display PostScript or interactive X-windows
graphics, respectively), and others. By checking appropriate lines in this list, flow can be
executed on different host configurations without changing its parameters. Note that
machines listed in this view could represent individual compute hosts or their groups.

Finally, some tools can generate slave processes that do not execute processing flows of
the kind shown in Fig. 1.1 yet employ the same PVM communication mechanism. For
example, this approach was used to implement 3-D visco-elastic finite-difference

12

modeling integrated into the processing system through module efd3d
(http://seisweb.usask.ca/SIA/modules/efd3d/mod.html). In this case, model building is
performed by broadcasting the corresponding instructions from the Process Phase of
efd3d, followed by time stepping, editing, and output instructions used to control and
synchronize the wavefield simulation.

3.5 Graphical User Interface
As with other similar projects (SEP, Seismic Un*x, SIOSEIS), the advantages of batch
(unattended) processing of large volumes of data have historically come at the expense of
an intuitive and consistent graphical user interface. Processing jobs had to be described
using either UNIX shell or specialized scripts, which always resulted in a significant
learning curve and increased the likelihood of errors. A specialized GUI would relieve
the processor of scripting, give the system a modern look and feel, and simplify learning
by bringing all the documentation to the user’s fingertips. Recently, a modern graphical
user interface (GUI) was designed for the SIA system (Figure 1.3).

Figure 3.3 Main SIA Graphical Interface window including: a) selectable tool packages, b) tool

library, c) multiple-job flow editor; d) parameterization of selected tool; e) job monitor, and
f) status line giving brief information about any item at which cursor is pointing. Job in front
of window (c) executes interactive 2-D gravity modeling, and job in back performs 1-D
synthetic seismic modeling using reflectivity method (Fuchs & Müller, 1971). For a compact
display, tool parameterizations can be hidden leaving only one-line summaries that may

13

change to display job progress (window c). Job flow editor windows (c) also include tool bars
providing flow-related functionality.

The GUI is based on the cross-platform Qt libraries from Trolltech (now Nokia), the
same libraries on which the popular KDE Linux interface is based. Using Qt relieved us
of any X-windows event handling and allowed to incorporate many of the most up-to
date GUI design approaches, such as the multiple-document interface, window docking,
themes, and platform-independent configuration. Although currently we perform all our
development under Linux, other UNIX-type systems such as Solaris, BSD, or Apple's
OSX should also work with minimal effort.

The main GUIU frame is subdivided into four components that are used most often: the
tool library, current module parameters, job editor, and job monitor (Figure 1.3). When
the job flow is edited and submitted for execution, the corresponding PROJECT object is
spawned to the appropriate host(s) and executed. During its operation, PROJECT
periodically sends information messages to the GUI process, and some of these messages
are displayed in the job monitor window. In principle, running jobs may also be
programmed to alter some of their parameters which will be immediately displayed by
the job editor. At the same time, PROJECT is also constantly listening to PVM messages
from the GUI, and through these messages, the user can control the remote execution of
the flow. Note that different running flows, even those submitted from the same job
editor, do not interfere with each other and are independently managed by the monitor.

The tool library (Figures 1.3a,b) offers access to over 220 processing tools, about 30 of
which are to various degrees experimental. The tools are arranged into packages (e.g.,
reflection, travel-time, earthquake, potential field data processing, graphics, or
development) which may be tailored by the administrators to meet the needs of a variety
of users. Within each package, groups of tools (such as input/output, plotting, etc.) are
displayed on tab panes (Figure 1.3). A mouse click action on a tool displays its
documentation, similar to the one posted at http://seisweb.usask.ca/SIA/sia-index.html.
As with ProMAX, typing within the library window invokes a search utility that attempts
a keyword search for a tool. When a tool is found, it can be dragged and dropped into the
processing flow.

Because the system is intended for users working in different research areas, tools
extracted from the different packages could have different pre-set default configurations.
For example, applications of the Automatic Gain Control (AGC) in high-resolution,
exploration, and earthquake seismology typically use very different time gate lengths.
Therefore, we provide several initial configurations for the same AGC tool included in
these three packages, and the user is allowed to select the most appropriate configuration.

The job editor (Figure 1.3c) is the central component of the user interface. A multiple-
document interface allows several flows to be opened simultaneously, in which the user
can edit and execute multiple jobs. Docking windows and tool bars allow a user to
customize the layout of the program to make effective use of multi-display systems.
Tools and configurations may be copied between jobs, saving the user time and reducing

14

entry errors. Clipboard functions, tool tips, and context-sensitive help are provided to
further simplify usage.

Jobs are assigned descriptive names that are passed to the flows during run time (Figure
1.4) and are used to identify them in the job monitor. Job flow descriptions can be built
from the tool libraries and examples, and they can also be imported into the interface by
dropping text into the flow window. Once placed in the job editor, both tools and
parameters can be rearranged by the drag and drop process, making it easy to correct
mistakes or change settings.

The job editor displays parameters of all tools in the form of a table (Figure 1.3c).
Parameterization can be extended (for example, several hundred lines to describe seismic
velocity models). Several types of parameters are currently defined (cf. Morozov and
Smithson, 1997): 1) integer, real, double, character string, and Boolean values, 2)
selectable and editable text lists, 3) colour, fill, line style, font, and color palette names
used by the graphics subsystem, 4) file, module, or flow names, and 5) compute host
names, including names of user-defined virtual clusters. Parameters of different types are
rendered differently; for example, Boolean values are represented by check boxes, and
selectable values – by drop-down lists. Colour highlighting distinguishes between the
floating point, integer, and character values.

Proper and sufficient documentation is critical in large-scale processing. At present,
processing flow documentation is implemented by allowing the user to attach free-text
commentaries to the modules, parameter lists, and parameter groups. The commentaries
can be edited and displayed in tool tips.

Once the job parameterization is complete, the flow is submitted for execution through a
remote process communication interface utilizing the PVM (Figure 1.1). Jobs may be
submitted either for parameter checks (Edit Phase only) or for full processing. If an error
is detected or a message issued from a running job, the display of the job (if currently
open) is automatically updated using context-dependent colour highlighting. The
corresponding error messages are displayed in parameter tool tips and also saved in the
job log.

Current module parameterization occupies a permanent window in the GUI (Figure 1.3d)
because of its continuous use during editing and also because some of the SIA modules
can have quite extensive parameterizations. For example, module image
(http://seisweb.usask.ca/SIA/modules/image/mod.html) currently offers 57 optional
parameter lists to describe its various graphics elements. In the module parameterization
window, these lists are displayed graphically in the form of a tree from which the lists
can be dragged and dropped into the job editor.

The job monitor (Figure 1.3e) is implemented by simply displaying the information PVM
messages received from the running flows and relaying user’s commands back to them.
Therefore, operation of job monitor is completely asynchronous and independent from
the job editing sessions.

In all GUI components, we make an extensive use of the drag and drop functions, tool
tips and status lines to identify options and features while reducing screen clutter. The

15

fonts, colours and other options can be modified to improve their appearance.

3.6 Discussion and conclusions
Although initially designed to extend a reflection processing package (DISCO) to wide-
angle seismic data analysis (Morozov and Smithson, 1997), its generalized processing
logic have allowed SIA to be extensible to a far broader range of applications. Neither its
processing flows nor core databases (Figure 1.4) utilize the specifics of seismic data
analysis. The tools are not limited in their types of operation, and a number of non-
seismic applications were included into SIA (see http://seisweb.usask.ca/SIA/examples),
with the benefits of uniform parameterization, GUI, interaction with other tools, web
service, and unified software maintenance and documentation.

The development of the system was driven by the needs of a fairly broad research
program extending from shallow to regional and global seismology
(http://seisweb.usask.ca/ibm/research.html). As a consequence of this broad scope, SIA
offers capabilities for nearly complete reflection and wide-aperture seismic processing
combined with support for multicomponent, variable-format data, extensive database
capabilities, and input/output in several formats (e.g., SEG-2, SEGY, PASSCAL-SEGY,
SEG-P, GSE3.0, CSS3.0, and SAC). Several original inversion codes (such as 2-D
reflection and generalized 3-D receiver function migration, genetic algorithms, artificial
neural networks, and parallel 1-D and 3-D finite difference modeling) were developed.
Tools for 2-D and 3-D processing and inversion of potential fields were recently
included. Interfaces to popular program packages, such as Datascope, Generic Mapping
Tools (Wessel and Smith, 1995), rayinvr (Zelt & Smith, 1992), reflectivity (Fuchs &
Müller, 1971), and Seismic Un*x, simplify interoperability with other approaches.

Although SIA is being continuously developed, it already represents a fully functional
system exceeding its commercial analogs in its scope and many other aspects important
for academic researchers. With further development, it could provide an excellent
research tool and software development and integration framework for many areas of
fundamental and applied geophysics.

3.7 Acknowledgments
The initial SIA development was inspired by one of the authors’ (I. M.) research on a
number of projects sponsored by NSF (EHR-910-8774-02, EAR99-03235), Gas Research
Institute (contract #5089-260-1894) and U.S. Air Force (Grants F49620-94-1-0134,
F49620-94-A-0134, F49620-96-1-0326, DSWA01-98-0015, DTRA01-01-C-0057, and
DTRA01-01-C-0081). However, none of these projects has directly requested or
supported this development.

16

4 Interactive 3D/2D visualization for geophysical data
processing and interpretation

The development of a modern GUI interface (Chapter 3) laid the foundation for building
other graphical capabilities of the system. By using the same general concepts, I wrote
the initial “xviewer” program that supported an abstract and custom image display
protocol. This program was further developed by Shannon Blyth (UofS undergraduate
student), and my supervisor (I. Morozov) designed many processing examples and the
corresponding client IGeoS tool functionalities utilizing this protocol. This Chapter
describes this protocol and its applications, based on the paper by Morozov et al.
(currently in press in Computers and Geosciences).

4.1 Introduction
In several previous publications (Morozov and Smithson, 1997, 1998; Chubak and
Morozov, 2006; Morozov et al., 2006), we described development of an open-source
software package for geophysical data handling, analysis, and modeling, which we called
SIA (http://seisweb.usask.ca/SIA). Started initially as a multicompnent seismic
processing package, the approach proved to be quite unique in its broad scope covering
the full spectrum of seismic, potential-field, and other geophysical data analysis, but
particularly in its implementation including object-oriented design based on C++,
dynamic linking, an integrated full-featured Graphical User Interface, parallel
functionality, and web services (http://seisweb.usask.ca/SIA/ps.php). Its abstract, logic-
based back-propagation data handling model (Morozov and Smithson, 1997), the ease of
implementing new tools, high code integration, and extensive documentation and
development support allowed extending the system into a code development framework
suitable for most tasks encountered in applied geophysics (Chubak and Morozov, 2006).
Recently, an automatic software distribution and updating service
(http://seisweb.usask.ca/SIA/cs.php) was added to the system (Chubak and Morozov, in
press), which facilitated concurrent development and automatic maintenance of the
package from source code developed by programmers collaborating across the web.

In this paper, we continue presentation of the SIA framework and focus on its new
component – general-purpose, customizable, interactive 3D/2D visualization server
program. As with other components of the system, in designing this server, we
emphasized universality, scalability, efficiency, and parallelism. The resulting code is
nearly entirely content-agnostic and suitable for working with most types of geophysical
data, in both passive (as data “viewer”) and interactive (“editor”) roles.

Traditionally, geophysical software packages developed, for example, in the reflection
seismic industry have been differentiated into “processing” and “interpretation” systems.
Processing systems emphasize flow-based design, with numerous operations applied to
the data in complex processing sequences, and only limited interactive functionality
offered by the individual tools. Special emphasis is made on reproducibility of the results
and batch (unattended) execution, often using multi-processor (up to several thousand
nodes) computer networks. In the open-source community, several seismic processing
systems were developed, such as the Seismic Un*x (Stockwell, 1999). However, these

17

systems still offer only basic user interfaces (essentially, UNIX and Perl shells) and most
importantly, are restrictive in their data formats (typically SEGY-like formatted UNIX
pipes or files), limited scopes and integration of the tools.

By contrast, interpretation systems are visualization-centred and based on data viewers
(for a 3D seismic open-source example see OpendTect, http://www2.opendtect.org/). In
such a system, data organization follows spatial patterns, and system operation is mostly
driven by data displays and user commands. Application of various “plug-in” tools is
typically determined interactively by the user, and only a limited number of fast
operations can be performed in real time.

In our visualization approach, we endeavour to erase the above differentiation between
processing and interpretation workflows and perform them on a common software base
and user interface. As described below, complex images and user interfaces can be
defined by the user as parts of SIA data processing flows. These images can then be
rendered either in publication-quality PostScript (based on the interfaced GMT programs;
Wessel and Smith, 1995) or using the new interactive OpenGL-based display server
described here. Because the content of the display is entirely determined by the
underlying processing, the display server can implement any functionality, such as
displaying seismic data and performing gravity modeling and seismic ray tracing in the
same session. Through direct access to GMT databases, the server is also able to include
3D coastline base maps in its displays. In addition, full seismic and other data processing
capability is also available to the interpreter through the underlying batch flow capability.

Below, we outline the design of the new SIA display server. In a short publication, it is
not practical to describe either the features of the program or its code in detail, and
therefore, we only emphasize the fundamental, “framework” aspect of the system by
focusing on its data abstraction and processing/interpretation model while leaving aside
its numerous applications. We begin with the underlying parallel object data
communication protocol, followed by a summary of the key features of the software.
Further, we explain how complex images are formed and interactivity programmed into
the processing flows and present several application examples. In conclusion, we briefly
discuss the significance and potential extensions of this approach.

4.2 Object image protocol
Job execution in the SIA system currently incorporates the Graphical User Interface
(including processing flow editors, cluster configuration, etc.) and multiple data
processing/modeling tasks. These programs operate in independent UNIX processes
communicating via a Parallel Virtual Machine (PVM) interface (Chubak and Morozov,
2006; Figure 4.1). Because of some concerns about the continuity of PVM support, its
calls are wrapped into a single C++ class that could potentially be replaced with another
inter-process communication library in the future.

18

Figure 4.1 Simplified SIA process communication. The Graphical User Interface spawns processing

flows (boxes labelled “process”) and monitors their execution. If interactive graphics is
requested in a flow, it starts a new display server or connects to an already running one.
PVM supports two-way communication between the programs which may run on different
compute hosts. Grey arrows represent the job monitor PVM messages (flows, data, signals)
and black arrows – graphical objects (see text for discussion).

The display server is started by a tool called “gui” included in the processing flows, and
similarly to the GUI, it maintains two-way PVM communication with them (Figure 4.1).
Processing flows can be configured to execute multiple displays across the network
(Chubak and Morozov, 2006); however, for a single user and display host, the same
server handles requests from all flows (Figure 4.1). Therefore, if needed, the resulting
images can contain objects mapped from different processing flows distributed across the
computer network.

Inter-process communication is carried out using asynchronous tagged PVM messages
(Figure 4.1). Tags are used for recognition of the message contents, and message formats
are automatically converted between different computer architectures by the PVM
interface.

The use of PVM messages in the GUI (grey arrows in Figure 4.1) is different from the
display server (black arrows). In the GUI, messages are used as instructions controlling
program operation by submitting processing flows, passing signals and data, and
retrieving results. By contrast, the display server uses PVM messages to maintain
hierarchical trees of data objects representing the images being displayed, without
interfering with the normal processing sequences. Identical image trees are stored on both
the client (flow) and server sides, and data exchange is carried out automatically
whenever either of these sides is updated. The communication is thus entirely bi-
directional and performed on the background, allowing construction of data displays as
well as interactive editing tools.

Schematically, the structure of an image tree is illustrated in Figure 4.2. Each node of the
tree represents a C++ object that is able to move across the PVM interface (Figure 4.1).
When an update to such an object is received by the display server, it performs the
requested action. For example, the “canvas” object initiates a new display window or
updates it, “layout” subdivides the window into layout grid, and other objects place their

19

respective images into the grid. Object “image” carries coordinate mapping information,
and numerous components of the “graphics” database are not displayed themselves but
provide image colours, line and fill styles, palettes, lighting, and other parameters (Figure
4.2A group of objects (buttons, sliders, etc.) provide user controls that can be placed on
the image for interactive functionality.

Figure 4.2 Image tree for a hypothetical Graphical User Interface designed by the user. Each node

corresponds to an object sent through the PVM communication pipe (black arrows in Figure
4.1). Two copies of such a tree are maintained at both client (flow) and display server sides
(Figure 4.1).

Most importantly, the object image trees are included in neither the display server nor
processing flow codes. The images are built entirely by the user by placing the
appropriate SIA tools into the flows, as described below (examples are given in
Appendices A and B). In particular, tools “image” provide most of the general-purpose
objects (2D and 3D lines, surfaces, grids), and tool “graphic” introduces line and fill
styles, layouts, markers, colour palettes, buttons, etc. In addition, specialized tools
provide their own objects, such as 2D velocity and gravity models (tools “rayinvr,”
“tracer,” and “grmod2”), or trace sections (tools “plot” and “plotrt”). In principle,
whenever useful, any tool can be equipped with a graphical representation.. At the same
time, the tools take no part in actually displaying the images, which maintain themselves
in the image automatically, as described below. This makes the application code simple
and robust.

4.3 SIA 3D display server
The display server is implemented by using Qt C++ graphics libraries (on which, for
example, the popular KDE graphical environment under Linux is based), with complex
3D/2D graphics using OpenGL. This ensures that the system will work on a wide variety
of systems and takes advantage of the hardware acceleration on graphics cards and
processors. It also allows native 3D rendering on stereoscopic displays, such as Geowall
(http://geowall.geo.lsa.umich.edu/). The use of C++ ensures the best possible
performance and high code integration and reuse. The look and feel of the program is
similar to that of typical modern graphical user interfaces (with drag and drop
functionality, status lines, tool tips, and elegant window themes available), and code
design follows the general style of Qt and OpenGL programming.

20

The only items in the display server window predefined by its code design are the main
window menu along its top and the status bar in the bottom (Figure 2.3). The remaining
main part of the window is subdivided by using docking windows and nested Qt layouts.
Layouts are named, described in the processing job, and placed into the object trees
together with other objects, which allows construction of both simple and complex
displays (Figure 2.3). Note that this system of nested, named image frames is similar to
the organization of frame sets in HTML. In addition to layouts, docking windows are
used to hold service objects, such as the object directory tree displays, property editors,
and custom control panels designed by the user. These docking windows also appear only
when requested by the processing job, and they can be moved to any position on the
screen and collapsed into toolbars during the interactive session.

Figure 4.3 Nested layouts for generation of complex co-ordinated displays. Here, the top-level layout

1 is indicated by grey, lower-level layouts 2 and 3 – by white colour and dashed contours,
respectively.

The display server program continuously watches its image object tree for updates and
rebuilds the display whenever a modification to one of its objects is detected. These
modifications can occur as a result of user actions or come from the associated processing
flow(s) through the PVM connection. The character of displays is also determined by the
objects themselves, and therefore new custom graphical objects can be introduced simply
by adding classes into the system library.

Along with objects representing the imaged geophysical content, the object tree includes

21

auxiliary graphical elements corresponding to Qt-derived classes. Currently, such objects
include the object tree viewer, property editor (upper and lower left parts in Figures. 2.4-
2.6), axes and controls (colour bars, sliders, buttons, and spacers). The object tree and
property editor allow the user to interact with the rendered objects and modify them, such
as show/hide, change colours, or edit other parameters.

Figure 4.4 Wide-angle crustal ray-tracing model from the ACCRETE wide-angle seismic experiment

(Morozov et al., 2001). Property editor allows switching between displays shading using the
P- and S-wave velocities, velocity ratios, or wireframe views. Red dots on the surface indicate
the source-receiver midpoints. Coastline map is derived directly from GMT databases. Note
the editing controls in the Properties menu. Rotation sliders (upper left) can be used for
precise rotation around the vertical and horizontal axes. The floating window (inset)
summarizes the graphical elements (colours, lines, palettes) that can also be edited in the
Property editor. See Appendix A for job files used for this display.

22

Figure 4.5 Display of a reflection-refraction shot seismic record. Variable-area wiggle over variable-

intensity amplitude display is selected. Note the interactive editing options in the Property
editor (lower left). GMT “jet” colour palette (originally re-implemented from Matlab) are
used for trace background. Note that over 40 preset palettes are available in this tool, as well
as throughout the system.

23

Figure 4.6 Emulation of the traditional continuous seismic record display. In this SIA job, we load

seismic data from files or network interface, subdivide them into segments and display in a
scrolling trace sequence (top in the right panel). For the most recent segment, a time-variant
spectrogram (middle) and amplitude spectrum (bottom) are also computed and displayed
simultaneously. In this example, buttons (bottom) are used to control the data input.

Viewing directions and zoom levels are controlled by the mouse as it is done in other 3D
interpretation programs. Optionally, the image aspect ratio can be set to remain constant
during screen resizing by modifying the underlying OpenGL transformation matrices. For
large objects containing hundreds of thousands of elements, efficiency may become a
serous issue. We addressed this issue by automatic resampling the images during
rendering, depending on the current viewable area and screen resolution.

An important enhancement of the SIA viewer compared to the traditional 3D displays
(e.g., GoCad, OpendTect) is the availability of custom, user-configured “views,” such as
plan or map views, fence diagrams, frontal cross-sections, projections of 2-D images into
3-D, or preset zooms. These views are created using tool “view3d” and are also
represented as named data objects on the image tree (Figure 4.2). In the image property
editor, active views can be selected via drop-down menus, allowing quick transitions

24

between them. Figure 2.4 shows an example and Appendix A illustrates the use of this
method for creating 3D displays.

Any object on the image tree is allowed to implement an “auto-play” method which is
called periodically by a separate thread on the viewer to perform various animations. In
particular, auto-play of the image object (Figure 4.2) modifies the OpenGL
transformation matrix causing continuous rotation, movement, or zooming the entire
image in and out. Such animated displays are sometimes helpful during data
interpretation or presentations of the results. As with other options, these playback
operations are configured by the user and included in job parameterization for tool
“image” (see Appendices A and B).

From a programming standpoint, processing objects (tools) and most graphical objects
are introduced into the SIA system by redefining functionality of the base SIA_MODULE
class. For example, Figure 2.4 shows a 2D visualization using our re-implementation of
the popular ray-tracing program rayinvr (Zelt and Smith, 1992). The program is
interfaced in the SIA package using a tool called rayinvr, with its base data class named,
by our convention, RAYINVR:
class RAYINVR : public SIA_MODULE
{
 CHARSTR module_name(); ///< name for the GUI
 int edit(); ///< Edit phase (parameter input)
 boolean process(); ///< Process phase (data processing)
 UI_X *X(); ///< Accessor for the graphical object
 boolean call(…); ///< custom operation performed by this tool
 …
}

Here, method edit()defines the parameter input from the job (see examples below and
in Appendix A) and process()describes the tool functionality during data (in most
cases, seismic trace) processing. Note the method X()returning a pointer to the object
performing graphical representation of the model (Figure 2.4), also derived from the base
graphical base class UI_X. When “rayinvr” is invoked in the job, this object gets
attached to the image tree (Figure 4.2) and propagated to the server (Figure 4.1).

On the display server (where no RAYINVR objects are available), an identical graphical
object is created by a dynamically-linked subroutine rayinvr_X(), also placed on the
image tree, and provides all the necessary information for the rendering system. The
object builds its images by combining several OpenGL plotting modes (such as
sequences of lines, triangles, quadrilaterals, and bitmaps) which are further converted by
the display server to OpenGL call lists, optimized, and rendered on the available
hardware. In addition to serving the graphics, the object can communicate to its mirror
peer in the processing flow, and sometimes to perform data analysis (such as seismic ray
tracing in this case).

Note the method call(…) in the example above, which is available in many SIA tools
and object-tree objects. These methods perform custom data operations requested, for

25

example, by buttons pressed on the user displays. In the case of “rayinvr” tool, these calls
perform ray tracing, saving, or exporting the model into files (Figure 2.4). In the
following section, we show some examples of how such interactive interfaces are
designed.

Finally, the display server supports stereoscopic displays by rendering OpenGL images in
two frame buffers using slightly different viewing angles. We have tested this approach
on our dual polarized-light projector GeoWall (http://geowall.org) system.

4.4 Custom displays and user interfaces
Interactive 3D or 2D displays are generated by regular SIA processing flows written in a
scripting language resembling that of DISCO processing system (Morozov and Smithson,
1997). Job flows can also be created, edited, executed, and saved in XML format when
the graphical user environment is used (Chubak and Morozov, 2006). Below, we describe
the general scheme of such displays and present several examples from different subject
areas, with samples of the corresponding job scripts in Disco-like format shown in
Appendix A.

Generally, all SIA displays are created by combining the following key tools in the jobs
(see http://seisweb.usask.ca/SIA/index/ and Appendix A):

1) “Graphic” – selects or creates layouts, colours, line and fill styles, colour palettes,
buttons, and other objects used in rendering. All these objects are given names
(identifiers) by which they can be accessed by other tools;

2) “Image ” – creates a sequence of objects from the data content, such as data grids
and lines, and attaches them to the image object tree;

3) “Gui” – sends the specified image trees to the display server.

Several instances of “graphic” and “image” tools can be used to create complex displays.

As a first example, interactive ray-tracing and travel-time modeling is perhaps the most
important inversion approach employed in wide-angle crustal seismic studies. This
procedure requires high-quality interactive graphics, which is limited even in the most
popular modeling programs, such as rayinvr by Zelt and Smith (1992). Figure 2.4 shows
an extension of rayinvr model in our system, using an example from ACCRETE seismic
experiment (Morozov et al., 2001). Along with several enhancements (accurate
correction for crooked-line geometry, detailed and non-surface consistent near-surface
structure accounting for wide-angle shooting in a fjord, and simultaneous P- and S-wave
ray tracing), the model now allows interactive viewing. Note that the model is created in
a two-dimensional (2D) image, which is projected onto a fence diagram in 3D (Appendix
A). The model can also be combined with other objects, such as base maps or seismic
sections (Figure 2.4). Colour shading can be selected interactively for viewing the P- and
S-wave velocities, velocity ratios, or Q (attenuation) parameters, or creating wireframe
displays of the model structure. Over 40 preset plus user-defined colour palettes are
available, and buttons can be used to perform ray tracing and printing (Figure 2.4). In the
near future, the model will also allow interactive editing of its parameters (layer depths
and velocities).

26

As a seismic example, Figure 2.5 shows a synthetic reflection shot gather. The display
modes including one-and two-sided variable-area and variable-intensity plotting, trace
gain, bias, and clipping, can be adjusted interactively in the Property editor (lower-left
part of Figure 2.5). Note that the three-component synthetics were also computed within
the SIA package. In another, interactive, example Figure 2.6 shows an implementation of
a simple continuous seismic trace display. In the underlying processing flow, the data are
loaded from a network connection or continuously updated “ringbuffer” files, filtered and
displayed in the form of continuously moving waveforms. Optionally, spectral analysis or
event detection algorithms can be included and the corresponding results displayed in the
same image (Figure 2.6). In this example, the input is also blocked periodically allowing
the user to retrieve one trace at a time by pressing a button on the display (Figure 2.6,
Appendix B).

A unique feature of the SIA display server is the availability of coastline data derived
from the database files distributed with the Generic Mapping Tools (GMT) package
(Wessel and Smith, 1995). Coastline contours (including rivers, channels, state and
marine boundaries) and polygons are rendered directly in 3D and bypassing the need for
map projections. Only a specification of the target map region is required, and the
resulting image can be combined with any other objects and viewed interactively in 3D
(Figure 2.4). The level of resolution is interactively selectable according to the
specifications of the available GMT databases, and line and fill colours are editable from
the object Property menu (Figures 2.4 and 2.6). Note that the GMT databases are
accessed by the display server directly, and PVM link is free from transferring large data
volumes, resulting in efficient and fast displays.

4.5 Discussion and further development
The most useful result of the development above could be in the enhancement of the
geophysical data analysis by integration of its many components. For example, with the
new 3D viewing capability, ray-tracing models (Figure 2.4) from multiple crossing lines
can be inverted concurrently in a common display and performed together with gravity
modeling and analysis of other data. Because the system is not limited to seismic record-
based processing, interactive gravity modeling can be readily incorporated in the same
graphical framework (Figure 2.7).

27

Figure 4.7 Interactive 2D gravity modeling example. Several graphics objects (observed, modelled,

and residual gravity profiles, and the density model) are posted by gravity modeling
(grmod2) tool, and buttons added to illustrate the interactive functionality. Colour palette is
used to represent the densities or, optionally, the rock types.

Apart from populating the displays with additional graphics objects, an important line of
potential development could be to expand the interpretation-style functionality described
in the Introduction. Processing flows can also be sent through the PVM connection and
placed on the image tree (Figure 4.2), and therefore they can be associated with the
various items in the same display. In such a way, the display could become a data
integration hub, with programmable processing flows feeding various types of data into
it.

Finally, the development of a user-customizable visualization server advances us to the
ultimate goals of the project, which can be summarized, using analogies from the popular
geophysical software packages, as follows:

1) Open-source, modular seismic processing pipe similar to the Seismic Un*x but
with a significantly broader data model and processing logic;

28

2) Modern graphical user environment and high-performance, common address
space processing similar to ProMax or Disco-Focus;

3) Parallel and distributed processing capability in excess of the above;

4) Interactive 3D visualization similar to GoCad or OpendTect;

5) 2D/3D potential-field data analysis and inversion capability;

6) Geophysical “toolbox” processing versatility and style, ultimately resembling that
of Matlab;

7) Built-in access to “academic” GIS data and PostScript plotting, similar to GMT;

8) Remote (Internet) data acquisition, real-time displays, and database capability,
similar to Datascope or Antelope (http://brtt.com);

9) Web-service operation (we are aware of no analogs to date);

10) Automatic software distribution and updating from source code and collaborative
development.

11) Addition of graphical capabilities to the tools should improve the user experience
and benefit most of the areas above.

4.6 Conclusion
A new 3D/2D interactive display server was developed for the SIA geophysical data
processing framework (Chubak and Morozov, 2006). The server utilizes Qt and OpenGL
graphics libraries, and takes advantage of the object-oriented and nearly content-agnostic
design of the core SIA processing system. It operates by creating image object trees that
are automatically propagated to the server(s) residing on remote hosts producing complex
structured and interactive displays. We show applications of this approach to several
areas of geophysics.

With introduction of this last major component, the SIA system becomes conceptually
complete and becomes capable for bridging the gap between the traditional processing
and interpretation software. Its unusually broad scope includes: 1) high-performance,
object-oriented data processing; 2) applications to many types of seismic and non-seismic
geophysics; 3) parallel operation on multiprocessor computer networks, 4) processing
web services; 5) support for collaboration and automatic software updating; and now 6)
parallel, interactive, and animated 3D visualization.

29

5 Automated maintenance of geophysical software
from distributed web repositories

In this short Chapter, based on Chubak and Morozov (2007), I describe an automated
system for code maintenance by using distributed web repositories, currently functional
in IGeoS system. Such tools are unique in academic software and, to my knowledge, also
in geophysical software industry. The concept that I proposed and implemented was
inspired by the examples from open-source Linux software projects. Development of
these tools have greatly simplified the maintenance of the package, which is now being
operated on several types of computers in our lab, and also downloaded and installed by
numerous researchers worldwide.

As in most computationally-intensive disciplines, geophysical data analysis involves
numerous algorithms. Large volumes of code have been created, including complex
multi-function processing systems, which are particularly well developed in reflection
seismology (Stockwell 1999). In most cases, data management, processing, or modeling
operations can be subdivided into smaller tasks (e.g., input/output, or some filtering),
whose code could be standardized and reused. Ideally, good solutions to problems should
be implemented once in a generic fashion so that others could benefit from them. Two
critical issues arise in the development of such a general processing system: a) a versatile
code integration protocol and a common processing environment suitable for its use in
different applications are required, and b) with growing body of software, code
maintenance tools are needed. Topic a) above was recently discussed by Chubak and
Morozov (2006); in this note, we describe the development of topic b) in our geophysical
data processing system.

Within the academic community, the development of computer code is still generally
performed in an ad hoc manner, without investing significant efforts in software
distribution and maintenance. Typical codes are developed by a single group, relatively
compact, and can be directly exchanged by the researchers. However, in the more
general, complex, and extensively developed packages used by numerous researchers
(such as SU and GMT - Stockwell 1999; Wessel and Smith 1999), the need for consistent
distribution support is already felt, leading to development of installation web sites and
shell scripts.

Complex software packages quickly become difficult to maintain. For example, Seismic
Un*x (SU; Stockwell, 1999) consists of several hundred programs that must be installed
to use the package. The SIA system (Morozov and Smithson, 1997; Morozov, 1998)
includes over 100 modules in the dynamically shared library, over 200 tools written in a
variety of languages, and numerous documentation files. Each piece of software may
have its own prerequisites (PVM, graphics, third-party software, etc.), compiler options
and other configuration issues. Installation and maintenance of such packages represents
a significant investment of time and effort from the user. The traditional approach of
using a configure script and the make utility to assist the user in the installation could
become cumbersome as it is not designed for the diversity of code found in processing

30

packages, nor does it address the need to update only certain code without affecting the
entire system. Complex software systems thus require sets of specialized utilities which
could automate maintenance and simplify installation, ideally by means of a web-based
update service keeping the codes up to date as they are being developed at multiple sites.

Automated code updates are broadly used in modern software (such as Microsoft
Windows or Adobe Acrobat). The open-source (particularly Linux) community is
addressing the broader needs of updating and maintaining programs by using multiple
software repositories. Programs such as apt, yum, urpmi, and emerge provide the
ability to easily update and install software on several types of Linux systems. Using this
model, we have implemented an automatic update and installation tools for the SIA
system (Morozov and Smithson, 1997).

SIA represents a major effort for providing a common framework for data management
and processing encountered in nearly any field of geophysics. The system is infinitely
scalable, high data pass-through, capable of extensive seismic, travel-time, and potential-
field processing. It includes a feature-rich Graphical User Interface (GUI, Chubak and
Morozov, 2006), interfaces to popular academic applications (such as SU and GMT),
capabilities for parallel computations, can operate as a web service (Morozov et al.,
2006), and the development of a 2-/3-D OpenGL graphics layer is underway. In order to
streamline code maintenance and to enable collaborative code development, a set of
utilities was added to allow users and developers to effortlessly share their code with the
community. These codes are being currently used to synchronise the software versions in
our group and also for recent distributions.

The new SIA code maintenance package includes four key utilities:

1) Program sia-config provides code customization for the current system. It
allows specification of the compilers and their switches for the various phases of
building the codes.

2) Program sia-update is the general code maintenance utility performing
packing and unpacking of the specified source code components, their building
and installation. When installed on a web server, the program also executes most
of the code maintenance server requests
(http://seisweb.usask.ca/SIA/cs.php). On a client, when called
with the appropriate switches, the code also tests the resulting binary codes, adds
users, generates lists of code repositories and performs file cleanup.

3) Program sia-install is the command-line code installer. It obtains the
specified components of the package through a web service and installs it by
using sia-update. For example, command sia-install
http://seisweb.usask.ca –distribution CG .all installs the
“Computers and Geosciences” (CG) subset from our web server.

4) Utility pdf registers new plug-in tools with the system (Morozov and Smithson,
1997). This registration includes creating UNIX make files, parameter
descriptors, GUI menus, and documentation web pages

31

(http://seisweb.usask.ca/SIA//index/).

A characteristic feature of our model is that the SIA code is configured identically on all
the code repository servers and processing clients. Code servers are therefore also
capable of performing full data processing, including remote processing as a web service
(http://seisweb.usask.ca/SIA/ps.php; Morozov et al., 2006). Conversely,
if a standard web server is available on a system used, for example, for specialized data
processing and development of the corresponding tools, it can automatically share these
tools with others. As a code is updated or added, all clients which connect to this
repository will immediately (as soon as the version number is advanced) have access to
it. Such symmetrical design makes installation and maintenance of multiple copies of the
package easy and reliable.

Figure 5.1 Configuration of SIA software repositories. Note that only the root entry points are shown

as the web addresses. For example, the actual code server for the selected line is
http://chubak.ca/SIA/cs.php. The buttons below allow the user to edit the list.

In the SIA GUI, users responsible for “administrative” tasks are able to add the URL of
any code repositories (Figure 3.1) they are interested in. Upon launch of the GUI,, the
update client builds a list of locally installed SIA packages including their version
information. It then obtains a similar list from each of the servers in the repository list
(Figure 1). The versions are compared and the user is notified if new packages are
available or if updates to already installed packages have been made. If the user chooses
to update or install a software component (Figure 3.2), the source code is downloaded
from the appropriate repository and compiled by the sia-update utility on the local
system. The downloaded code can consist of multiple files in various languages (C++,
Fortran, or Java). This utility takes care of all aspects of the installation including
generating the make files, documentation, and ensuring that the resulting code is
optimized for the local architecture.

32

Figure 5.2 Choosing software components to update. Note that the components whose names begin

with a period are system libraries or configuration directories, and the rest are plug-in
processing tools (Morozov and Smithson, 1997). For each component, its current and
updated version numbers, and the source of the update are displayed. The user can select
some or all components which will be downloaded, compiled, and installed.

In conclusion, the ongoing development of the SIA code framework shows that the entire
scope of critical issues facing geophysical data management and processing can be solved
in a consistent manner. The codes are highly integrated, streamlined for data- or
computationally-intensive seismic and non-seismic processing and modeling, make broad
provisions for parallelization and remote (web service) operation, and incorporate some
of the key community software. With the newly developed web distribution service, the
codes can also be developed by multiple authors and seamlessly maintained up to date.

33

6 Towards a comprehensive open-source system for
geophysical data processing and interpretation

The discussion in this Chapter is based on the papers by Chubak et al (2007a and b), in
which we emphasized the new aspect of the IGeoS package as a framework for
geophysical code development. With such key utilities as the GUI, 3D/2D viewer, and
software maintenance system in place, it was shown that practically any type of
application (data processing, modeling, inversion, graphics) could be described and
efficiently implemented in this framework. The paper below outlined this design
philosophy and presented several examples of its application.

6.1 Introduction
Because of its critical importance for modern data acquisition and analysis, geophysical
software development has grown into a major industry. Many companies, from majors
such as CGG, Landmark, and Schlumberger to numerous smaller vendors provide
software solutions and services for numerous applications. Traditionally, geophysical
software has been highly specialized for certain applications (e.g., field QC, reflection
seismic processing, modeling, or interpretation). However, with growing concentration
of computational power, the present and future trends in geophysical software are clearly
for re-integration, allowing a researcher instant access to the entire data analysis flow.
Another important trend is the explosive growth of open-source software developed and
supported by the community.

Our package, called SIA (http://seisweb.usask.ca/SIA) has grown from a diversity of data
analysis tasks encountered in an academic environment, and by design, is not limited to
any of them. Since its inception in 1995, it was used to process reflection, GPR, and
crustal-scale wide-angle seismic data, to create 3D, migrated Receiver Function images
of the Earth’s upper mantle, perform travel-time modeling and inversion, process seismic
records from nuclear explosions, and recently – to manage a regional seismographic
network, to process gravity and air-magnetic images, and even to provide web data
services. Started initially as a multi-component interface for CogniSeis DISCO reflection
processing package, the approach proved to be quite unique in its broad scope covering
the full spectrum of geophysical data analysis.

The open-source model is important for rapid exchange of ideas, development, and
response to the needs of the community. The success of open-source software in recent
years has demonstrated that it can meet and from many aspects exceed the quality of
commercial solutions. With fast development cycles and code contribution directly from
users, new features can be quickly implemented and vetted. This has been particularly
well demonstrated by the community development centred on the GNU/Linux operating
system. The demand for versatile open-source geophysical systems is high – note that in
just nine months from November 2006, we received over 190 requests for SIA downloads
(Figure 4.1

34

Figure 6.1 Known locations of IGeoS downloads (red dots) from November 2006 to July 2007. Note

that the map was produced using the GMT programs (Smith and Wessel, 1995) integrated in
the package.

In reflection seismics, many consultants and academics use and write code for Stanford
Exploration Project (SEP) and particularly Seismic Un*x (SU) systems because of their
maturity and low cost. These systems are adequate for many single-channel applications;
however, in more complex tasks, they are strongly limited by linear, UNIX file-stream
based design and only basic user interfaces. Matlab (with its free equivalent, Octave) is
another popular solution because of its rich toolbox, readily available graphical tools and
the ease of developing new processing code. However, Matlab often shows prohibitively
poor performance in real data processing problems and requires extensive programming
expertise for operation.

SIA system stands out among its counterparts in several respects. It is an open-source
solution that endeavours to ultimately provide a comprehensive processing/interpretation
solution for the geophysical industry and academia. It provides efficient, dynamically-
linked common address space operation (similar to Disco and Promax, and unlike SEP or
SU), with significantly richer and customizable data structures and tool interoperability.
Its code integration and C++ programming flexibility are similar to those of Matlab. It
allows several types of code parallelization and includes libraries and tools for managing
multi-processor processing environments. Further, it has a parallel graphical environment
with a tightly integrated user interface and customizable 3D data visualization based on
cross-platform Qt and OpenGL libraries. Recently, tools for real-time data input and
seismographic network management were also added to it. It also has a unique capability
of operating remotely, as a web service, and an automatic software distribution and
updating service (http://seisweb.usask.ca/SIA/cs.php). These components were described
in previous publications (Morozov and Smithson, 1997; Morozov, 1998; Chubak and
Morozov, 2006; Morozov et al., 2006; Morozov et al., in review; Morozov et al., 2007).
In this paper, we overview the key features that may be of most interest to geophysicists
and software industry.

35

6.2 (Not only) Seismic processing system
SIA currently is a nearly complete seismic processing system, with many tools reaching
to the broader geophysical applications (Chubak and Morozov, 2006). The current system
scope includes reflection, wide-angle, and to certain degrees earthquake seismology, 2-
and 3D potential field processing and inversion, PostScript and interactive graphics.
Nearly 200 dynamically-linked plug-in tools are closely integrated with a content-
agnostic processing monitor and often between each other forming sub-packages, such as
graphics, AVO, or Artificial Neural Networks. Almost any type of data can be handled
by the system making it possible to merge multiple data types.

The system was originally a replacement of Disco reflection seismic processing system,
and it still supports Disco-style job scripts, with several extensions (see job examples at
http://seisweb.usask.ca/temp/examples). Tools written for Disco can also be incorporated,
with virtually no modifications.

The key components of the system (the GUI, processing flows, visualization and display
tools) operate asynchronously and communicate through a Parallel Virtual Machine
(PVM) interface (Figure 1.1). Because of the use of PVM, the many components of SIA
can be distributed, allowing, for example, to distribute the processing load or for the
visualization program to operate on one or several dedicated computer systems.

6.3 Processing concept
The central concept of SIA is the abstract “processing flow” representing a logical
sequence of data manipulation or modeling steps performed by “tools” connected by
structured “trace” data buffers (Figure 1.1). The sequence is recursively invoked in
reverse order, more resembling the mechanism of logical inference than data processing
(Morozov and Smithson, 1997). Note that the flow contains no mechanism for data
propagation (this is done entirely by the tools), and thus no assumptions about the data
types or character of processing is made. As an example, the system can take a random
walk through a 3D seismic dataset (Morozov, 1998). Flows, as well as data traces and
many other objects can be transmitted across the PVM connections (Figure 1.1) to
potentially form a complex, parallel processing environment.

On top of this abstract processing model, the following features further enhance the
flexibility of the system:
“Trace records” (Figure 1.1) can be of variable data formats, sampling intervals, record
lengths, and time starts. They can contain linear arrays (seismic records) or 2- and 3D
arrays representing multi-component seismic records, or 2D grids used in potential-field
processing. However, traces are not required in order for the system to operate.
Other types of data are broadly used and often introduced by new tools (Figure 1.1):
velocity models, travel-time curves, database tables, Artificial Neural Networks,
inversion engines, and various graphical objects.
User-defined “trace headers” can contain variables of any types (as in Disco or ProMAX,
and again unlike SU), but also arrays, references to databases, and functions allowing, for

36

example, “on the fly” computation of midpoints and azimuths based on the endpoint
coordinates.
“Tool” parameterization is unusually flexible and uses trace headers, database fields,
symbolic text substitutions, and UNIX command-line parameters interchangeably with
constants. Many tools support structured parameterizations allowing, for example, to
design custom graphical user interfaces (GUIs) or build composite PostScript plots. Tools
can be represented by binary codes or macro-commands combining other tools, with
coherent parameterization and optimized for a particular task.
Some tools may not participate in the flow (Figure 1.1) at all but instead provide services
to other tools. For example, the AVO tool can compute Zoeppritz reflection coefficients
or Elastic Impedances for plotting, by using models generated by the tools producing
waveform synthetics.
In all geometry manipulations, the system is aware of the Earth’s shape, with several
ellipsoidal approximations or Cartesian coordinates to choose from.
All processing flows can operate from the user’s GUI or from parameterized batch scripts
allowing execution of complex, unattended, self-documented processing sequences.

6.4 Graphical User Interface
Constructing processing flows is greatly simplified by a modern GUI which also provides
the utilities users expect from commercial software, such as project management, process
monitoring and control, search, and extensive context-sensitive help (Figure 1.3). The
GUI is based on the cross-platform C++ Qt libraries from Trolltech, so that SIA can be
ported to a variety of operating systems, such as Linux, Solaris, or even OS X with only
minimal effort. In a grid or cluster environment, its configuration is also done from
within the GUI by specifying the nodes on which a particular flow and its components
(subflows, I/O, display tools) is to be run. This allows multiple processing jobs to be ran
in parallel on either a Beowulf cluster or distributed over a peer network.

Tool names in the GUI may be context-dependent and showing summaries of their
parameters (Figure 1.3). Tools can also communicate the changes in their parameters
during run time (e.g., from interactive editing by the user), which would be displayed and
saved on closing the job.

6.5 OpenGL/Qt 3D/2D display server
Visualization and interaction with the data is a key to many data analysis tasks.
Traditionally, geophysical software packages have been differentiated into “processing”
and “interpretation” systems by the role of interactive visualization in them. Processing
systems emphasize flow-based design (Figure 1.1), with special emphasis on
reproducibility of the results and batch (unattended) execution. By contrast, interpretation
systems are visualization-centred and based on data viewers (such as OpendTect,
http://www2.opendtect.org/). In such a system, the data organization follows spatial
patterns, and system operation is mostly driven by data displays and user commands.
Application of various “plug-in” tools is typically determined interactively by the user,
and only a limited number of fast operations can be performed in real time.

37

In our visualization approach, we endeavour to erase the above differentiation between
processing and interpretation workflows and perform them on a common software base
and user interface. Some examples are shown in Figures 4.2-4.6. By combining tools
from the graphics package, complex images and user interfaces can be defined by the
user as parts of SIA data processing flows. These images can then be rendered either in
publication-quality PostScript (using the interfaced GMT programs; Wessel and Smith,
1995) or by using an interactive OpenGL-based SIA display server. Because the content
of the display is entirely determined by the underlying processing, the display server can
implement any functionality, such as displaying seismic data and performing potential-
field modeling and visualization (Figure 4.2), seismic ray tracing (Figures 2.4 and 4.3),
and computing waveform synthetics (Figure 4.4) in the same session. Through direct
access to GMT databases, the server is also able to include 3D coastline base maps in its
displays (Figure 2.4). In addition, full seismic and other data processing capability is also
available to the interpreter through the underlying flow-processing capability.

Figure 6.2 An example of interactive 3D visualization for potential-field interpretation. The model

shows the Precambrian basement in SE Saskatchewan coloured by air-magnetic anomaly
(copper colouring). The surface topography is highlighted using the “sea-land” colour
palette from GMT. Over 40 preset colour palettes are available, and custom palettes (as well
as colours, line styles, and lighting) can also be defined.

38

Figure 6.3 Wide-angle crustal ray-tracing model from the ACCRETE wide-angle seismic experiment

(Morozov et al., 2001).

39

Figure 6.4 Display of a reflection-refraction shot seismic record. Variable-area wiggle over variable-

intensity amplitude display is selected. Note the interactive plotting options in the Property
editor (lower left). GMT “jet” colour palette (re-implemented from Matlab) is used for trace
background.

40

Figure 6.5 Continuous seismic record display. In this SIA job, we load seismic data from files or

network interface, subdivide them into segments and display in a scrolling trace sequence.

41

Figure 6.6 3D seismic trace display with a floating object property window.

The visualization system is entirely controlled by the processing flows and is able to
render a variety of basic data types including:
Seismic traces with adjustable settings and arbitrarily positioned in 3D (Figures 4.4-4.6).
Lines and surfaces with variable styles, colours, markers, etc.
Bitmap-style graphics rendered on any plane oriented in 3D.
Customizable line styles, colours, colour palettes, axes bars, labels, push-buttons, sliders,
etc. (Figure 4.5).
Complex objects (such as velocity and gravity models) are composed of the objects
above by the corresponding tools. In addition, user-specified coordinate transformations
are available, so that images can be rendered on arbitrary surfaces. This allows, for
example, drawing 3D seismic fence diagrams or various displays on the topographic
relief or on the surface of ellipsoidal Earth.

The display server operates in parallel on the same or different (optionally, multiple)

42

computer hosts. While interacting with the user, the server also communicates with its
master processing flow, causing it to take the appropriate actions. For example, Figure
4.5 shows an implementation of real-time network data input control for a remote Internet
seismograph (Morozov et al., 2007). The buttons (bottom of Figure 4.5) are used to
control the data input by the master flow performing the seismic network monitoring.

6.6 Integration with popular open-source software
Open-source and open data format design encourages mutual software integration.
Several popular academic applications proved to be particularly useful in our work, and
they were integrated with the SIA system using specialized tools:

The Seismic Un*x (SU) (http://www.cwp.mines.edu/cwpcodes/) is a free and complete
seismic reflection processing system broadly used at the academia and by consultants in
the industry. It was incorporated virtually entirely by means of SIA tools allowing
running SU processing pipes in (remote) parallel processes and exchanging the seismic
traces via PVM connections. In addition, several SU codes were “wrapped” into SIA I/O
interfaces making them fully compliant with the system. In both cases, the SU tools
gained the advantage of the GUI, extended graphics, a more powerful user interface,
parallel processing capability, and code maintenance services.

The classic reflectivity (propagator matrix) approach for modeling elastic wavefields in
1D, layered models was included in both K. J. Sandmeier’s (Fuchs and Muller, 1971) and
Kennet’s (1993) implementations. These tools are important parts of the emerging AVO
package. Both tools have identical model descriptions and output 3-component synthetic
seismic traces directly into the job flows (Figure 4.4). The first of these programs was
also parallelized for operating on a Beowulf cluster, and is also capable of plotting the
models and tracing travel times in them.

3D, parallel, visco-elastic finite-difference modeling (Bohlen, 2002) was revised for
encapsulated PVM inter-process communication and integrated with the GUI. Currently,
work is underway for providing an accurate topographic free-surface condition, 3D
model visualization, and interactive model building.

The application plotmtv
(http://www.phy.ornl.gov/csep/CSEP/CORNELL/TUTORIAL/PLOTMTV/OVERVIEW.
html) is a fast multi-purpose plotting program for visualization of scientific data in an
X11-window environment, which also produces useful PostScript graphics. We created a
seamless interface for this application and use it to view database tables and seismic
traces. We also bundle plotmtv into the standard SIA distribution.

The Generic Mapping Tools (GMT) is a collection of ~60 UNIX tools for high-quality
geoscience PostScript graphics, and particularly maps (see example in Figure 4.1). It was
incorporated as one of the rendering “drivers” in the SIA graphics system. In addition, the
display server is also able to access GMT georeference databases directly and rendering
them in full 3D using OpenGL (Figure 2.4).

Rayinvr (Zelt and Smith, 1992) is a popular travel-time modeling and inversion program
for wide-angle seismic data. It was incorporated by creating model and travel-time

43

editors, introduction of corrections for crooked-line and ellipsoidal-Earth geometries.
Work on interactive ray-tracing in true 3D geometry is underway (Figure 2.4).

6.7 Data processing and modeling web services
SIA is also apparently the first seismic processing system to operate as a web service
(Morozov et al., 2006). A standard distribution installed on a system accessible via HTTP
(e.g., http://seisweb.usask.ca/SIA/ps.php) can receive processing jobs, execute them and
return the results, currently in the form of web pages or files ready for download (Figure
4.7). The content of this processing is entirely controlled by the client. The client is even
able to upload web forms on the server and associate them with processing jobs, thereby
creating custom web data or processing services. This approach was utilized to generate a
library of SIA processing examples, some of which are also executable on-line (Figure
4.7; also see http://seisweb.usask.ca/temp/examples).

Figure 6.7 Sample page (section “Synthetics,” larger window) in the current library of processing

examples (http://seisweb.usask.ca/temp/examples). Such pages are generated by tool ‘expert’
included in the processing flows executed on the server. The contents of on of the sample
flows are shown in the smaller window in Disco-like format.

6.8 Development framework
From its inception, SIA was not intended as a complete product to serve a specific narrow
task, such as reflection seismic processing (Morozov and Smithson, 1997). Instead, the
design goal was to provide an extensible framework capable of supporting nearly any
type of geophysical data processing, modeling, or interpretation. However, due to the
character of its previous applications, most of SIA toolkit development was so far related

44

to seismology.

The system allows its users to rapidly add new functionality with a minimal effort. Two
principal features simplify the development within SIA. Firstly, new modules can be
added to perform custom data processing while taking advantage of other tools and
extensive C++ class libraries, including Qt and OpenGL graphics. Secondly, tool
interactions, aided by the GUI, effectively transform Disco-like job scripting into a
model- and process-description language. Custom interactive graphical applications can
thus be created by simply designing processing flows and without any “serious”
computer programming.

New tools can be coded using a mixture of C, C++, FORTRAN, and even Pascal or Java.
At the University of Saskatchewan, graduate students routinely write new processing
modules for class exercises and also to further their research. In our experience, a
reasonably complex tool can be completed in only a few days. Templates have been
created to aid in the development process, and a complete set of compilation and linking
tools are provided. New modules are integrated with the system by the maintenance
utilities so that they become available from the graphical interface and provide fully
functional context-sensitive help to the user.

6.9 Automated documentation, code distribution, and
collaboration tools

Given its role as a development framework, the central theme of SIA in the recent years
has actually been code and documentation maintenance. With about 600,000 lines of
tightly integrated code, special efforts are required for facilitating development,
maintaining user documentation, and performing system integration and testing. Most of
these services are wrapped into a single utility sia-update, which can be used to
compile system libraries, tools, the GUI or display packages, and test them. The utility
also creates user’s and programmer’s documentation
(http://seisweb.usask.ca/SIA/index/), posts examples, and creates new user setup. First-
time installation or update from a remote distribution can be performed by a single call to
sia-install utility, which can be obtained from the SIA installation page at
http://seisweb.usask.ca/SIA/doc/install.html.

To aid in decentralized collaborative development, SIA offers an automated code
distribution system (http://seisweb.usask.ca/SIA/cs.php) modeled after open-source
projects such as apt-get and yum. Each installation may configure a list of
repositories which will be checked for updates to currently installed or new tools. If
updates are available, the user is notified through the GUI and is provided with their
descriptions. When an update is selected for installation, the source code is downloaded
from the server and compiled on the local system. The entire process is automated and
controlled from within the GUI, or it can be performed from a command line. By
downloading source codes rather than binaries, the system is able to share tools across
many supported architectures. Further, the code is compiled optimized for the hardware it
is running on (i.e. AMD, Intel, or PowerPC) ensuring the best possible performance. The
ability to install and update code is restricted to “administrative” users, which may be

45

useful where there is a single installation for a number of users.

Well-supported open-source code standardization could allow multiple developers to
collaborate by sharing the codes in a consistent, reliable, and architecture-independent
manner. SIA accomplishes this by allowing any installation to be used for code
development and also to function as a code server (if a standard web server, e.g., Apache,
is available). In such a way, source codes developed locally become immediately
available for installation on all subscribing systems. Finally, the author of a new tool can
arrange for automatic “bug reports” related to that tool to be received by the code web
service above.

6.10 Conclusion
SIA appears to be the most full-featured seismic processing system which could be of
interest to researchers in both academia and industry. Its strengths are in its unique
processing concept, broad scope, modern interface, robust core, very general
visualization system, and parallelization capabilities. Since new ideas in seismic
processing constantly require new software, SIA is optimized to serve as a concurrent
development framework allowing new processing tools to be rapidly developed while
leveraging the existing code and graphical utilities to dramatically reduce the time and
effort required. The display system seamlessly handles both 2D and 3D data while
offering some unique features and allowing extensive customization by the user without
the need for programming. A code update and distribution system provides easy and
automated access to software updates and allows developers to share their work without
the need for installation or maintenance utilities.

As a closing remark, note that unlike the FreeUSP, GMT, SEP, Seismic Un*X, SIOSEIS,
and of course their commercial analogs, practically everything of the above was
accomplished without any financial support. The development was carried out in support
for different projects in several areas of geophysics, united with a firm belief that the
software can and shall be well-designed, integrated, re-used, and shared.

46

7 Rebuilding a Regional Seismographic Network in
Southern Saskatchewan

In this and the following Chapters, I touch on a specific application of the software
development described above. Chapter 7 is based on the paper by Morozov et al. (2007),
in which we present the need for seismic monitoring in Saskatchewan and the current
status of rebuilding the network by using new digital instruments. I built the first two
instruments myself, and proposed an Internet software solution described in Chapter 8
(based on Chubak and Morozov, 2008). This system is not directly related to IGeoS
package; however, I designed an Internet data exchange protocol, and my supervisor (I.
Morozov) wrote several IGeoS tools to use it.

Currently, two stations are functional near Saskatoon, with seismic data continuously
transmitted to the lab, processed in real-time by IGeoS flows, and saved on disk and
regularly backed up. Note that such level of automation appears to be unavailable with
commercial hardware and software solutions provided, for example, by Nanometrics and
employed by the Canadian Seismograph Network. However, such automation is critical
in our environment, in which there are no personnel regularly monitoring the seismic data
acquisition.

7.1 Introduction
Despite its large territory, Saskatchewan shows a striking paucity of seismic monitoring
stations compared to practically any other area in North America. Saskatchewan is the
only province in Canada not contributing seismic data to the Canadian National
Seismograph Network (Figure 5.1). Although mining and petroleum exploration
companies routinely conduct local micro-earthquake monitoring for hazard mitigation
and assessment studies, no regional seismic data is systematically collected for research
purposes. In the 1960’s-70’s, the Department of National Defence operated a station near
Creighton for atomic blast monitoring. Since 1978, regional stations were operated by the
University of Saskatchewan at four different sites on the surface and two underground
(Agrium and Colonsay mines). The Geological Survey of Canada operated the Big
Muddy station from about 1982 to 1990. Only one of these stations remains functional at
present.

47

Figure 7.1 Map of the Canadian National Seismograph Network (from Natural resources Canada

web site, http://earthquakescanada.nrcan.gc.ca). Note the gap in station coverage across
Saskatchewan.

The paucity of seismic recording in Saskatchewan is explained by several reasons. First,
together with Manitoba, the province is among the least seismically active in North
America (Figure 5.1). The largest known earthquake in Saskatchewan was the M = 5 1/2
event in 1909. Since the start of instrumental recording in western Canada in the mid
1960’s there have been 13 known natural earthquakes. Since 1978 there have been more
than 40 mining induced earthquakes, some causing minor damage. Also, the strength of
the seismology groups at the University of Saskatchewan has traditionally been in active-
source, exploration, and engineering seismics. Maintaining several continuously
monitoring seismic stations requires a well-developed infrastructure and constant
attention by skilled personnel. Both of these requirements are contingent on funding
which had only been intermittent for earthquake-related projects.

Earthquakes of magnitudes over about 2.5 are not uncommon in Saskatchewan (Figure

48

5.2). In recent months, several such earthquakes were recorded by the existing U of S
station and local networks operated by potash mining companies. To accurately locate
seismic events, invert for their source parameters, and interpret their nature, one needs
wider-aperture and lower-frequency seismic recording than the one used for mitigation of
mining hazards. In addition, analysis of such data needs to utilize the observations from
other national and international networks. At present, GSC location accuracy in southern
Saskatchewan is ±20 km, and the analysis of small events is poor.

Figure 7.2 Map of Canadian earthquakes (from Natural Resources Canada web site,

http://earthquakescanada.nrcan.gc.ca).

Apart from monitoring the local seismicity, a permanent, modern, and robust seismic
network in Saskatchewan would help filling the gap in seismic data coverage across
Canada (Figure 5.1). The existing U of S station responds to earthquakes of magnitudes
~4-5 from the continental margins of Canada and from the Arctic (Figure 5.2), and events
of over m≈5.5 – 6 are typically well-recorded worldwide. Events as small as m = 2.5 can
be recorded anywhere in Saskatchewan

Strong seismic events occurring at large distances (20-50º) can be used not only to
analyse the deep interior of the Earth but also to provide valuable information about the
structure of the crust and even the crystalline basement. Modern data analysis techniques
allow inversion for near-station structures that might be of interest for diamond
exploration and for petroleum industry. Thus, by using the so-called Receiver Function
technique, one can combine recordings of different components of ground motion to
measure the thickness of the crust and of basin sediments. Crustal anisotropy measured
from teleseismic recordings provides information about tectonic stress. Also, as it has

49

been shown recently, cross-correlation of the seismic “noise” from several stations can be
used to invert for crustal (in our case, basin) structures.

Another important aspect of expanding seismic monitoring activities is education and
outreach. Real-time seismic recording can be naturally combined with live and interactive
displays showing seismic data, recent earthquakes, and also providing various geology-,
science-, and resource-related information. Such displays are becoming increasingly
popular and are getting recognized as invaluable educational tools. We have recently set
up such a display near the Museum of Natural Sciences at the U of S (Figure 5.3).

For all aspects of seismic monitoring mentioned above, from real-time monitoring to
advanced analysis and computer displays, fully digital recording and automated data
handling is required. The existing U of S station near Bergheim (Figure 5.4) is analogue
and uses a helicorder (paper drum recorder) to record seismic waves. Although simple
and robust, this system does not allow reproduction of the records in a form suitable for
further analysis or remote display. Recent upgrading of this station to a digital Taurus
seismograph by Nanometrics did not completely resolve this problem, as the system still
requires extensive and continuous effort for saving and displaying the records.

Here, we describe our approach to rebuilding the U of S seismographic network,
converting it into modern digital technology, and integration with live public-interest and
educational displays. We decided to pursue this goal by building our own low-cost
instruments and by developing all the necessary software for data acquisition, processing,
and display. In conclusion, we outline our plans for its further expansion and
enhancement.

Figure 7.3 Display of earthquake-related information at the Department of Geological Sciences,

University of Saskatchewan. This live web-based TV display constantly shows the recent

50

global earthquakes, live seismograms from our SKBG station (Figure 5.5), as well as
presentations about the Earth, tectonics, and seismology.

7.2 Low-cost Internet seismograph
To achieve an affordable and low-maintenance solution for seismic data acquisition, we
built our own system using components (PAR4CH 4-channel amplifier, 24-bit A/D
converter, and a GPS clock) manufactured by Symmetric Research (http://symres.com).
The use of this hardware allowed reducing the cost of the system by ~8 times compared
to a Taurus while providing similar, industry-standard data quality. The seismograph
boards were connected to a mini-ITX PC computer. No moving parts (fans or hard disk
drives) were used in order to reduce vibration that might influence the recordings. The
equipment was mounted inside the upper half of a steel barrel, with its bottom part
occupied by three 1-Hz geophones by Geospace (Figure 5.4). For temperature control
during the cold season, two long-life incandescent light bulbs are used (Figure 5.4).

Figure 7.4 Left: the seismic station during testing. Right: the seismograph assembly, with its lid open.

Thermal insulation and electrical bulbs are used for temperature control during
Saskatchewan winters.

Open-source Linux operating system was installed on the computer, with device drivers
provided by Symmetric Research. We also wrote all the necessary software for data
acquisition and transmission to the data collection facility via a standard Internet (wired
or wireless) connection. The software consists of five main parts: 1) data collection server
installed on the acquisition computer (Figure 5.4); 2) web server allowing remote control
of the acquisition software; 3) data relay program installed on a Linux computer in the
lab, 4) ring buffer for continuous disk data storage, and 5) data analysis and visualization
software.

The data acquisition server program constantly monitors the network for an available data

51

recipient (typically, the relay program) and sends the seismic records to it in near-real
time. In addition to the records of ground movement, GPS timing data (to sub-1 ms
accuracy) and state-of-health information (such as the temperature inside the system
compartment) is transmitted. If the network is down, the server stores the records and
attempts resending them when the connection is re-established. An Apache web server
installed on the same computer allows viewing and setting parameters of the recorder
remotely, by using any web browser. Finally, whenever a hazardous system condition
develops (e.g., temperature dropping out of range), the system sends an email to alert the
administrator and if needed, performs data backup and prepares for shutdown.

The data relay program receives a continuous stream of data from the field unit and re-
broadcasts it to one or several clients interested in data analysis or display. The program
also saves the records continuously to disk in the form of a “ring buffer” allowing
random or circular access to the data by other programs. A single relay program can serve
any number of field data servers, and in the future, it will also be able to send the data to
the national data centres and to other interested parties. State-of-health information is also
saved in a database immediately as it is received.

The data analysis software is very flexible, broad in scope, and takes advantage of the
power of SIA seismic processing systems that we have developed over a number of years
(e.g., Morozov and Smithson, 1997; Chubak and Morozov, 2006;
http://seisweb.usask.ca/SIA). The system currently includes about 200 tools for data
filtering, inversion, and display, and it was used in a number of applications ranging from
exploration, crustal and earthquake seismology to the analysis of gravity and air-magnetic
data (Li et al., 2005), 3D data visualization, and even web services (Morozov et al.,
2006). By adding a module for network data input, we obtained a variety of ways for
displaying or saving the records. The specific choice for data display is made by the user
by designing the appropriate combination of SIA tools (Figure 4.5). In addition, the
software is being continuously expanded by the Geophysics graduate students as a part of
their class and research projects.

7.3 Towards a digital seismic network near Saskatoon
The existing and proposed sites for the new U of S digital seismograph stations are
shown in Figure 5.6. SKBG is the station located in the U of S Geophysics test site near
Bergheim. The station is equipped with a 3-component Nanometrics Taurus seismograph,
the same as used by the national POLARIS consortium in Canada
(http://www.polarisnet.ca/). Currently, the station is using three 1-Hz L-4 geophones,
which we intend to upgrade to a broad-band sensor in the future. The data from Taurus
are streamed to the U of S via a radio Internet link. An additional vertical-component
analogue channel still also operates at this station.

Station SKWC is being installed at the time of this writing (April 2007) at the White Cap
Dakota First Nation grounds south of Saskatoon. In addition to recording regional and
global seismicity, the purpose of this station is to provide additional information for
monitoring ammunition blasting activities at the Canadian Forces depot near Dundurn.

52

Power connection for this station was provided by the Forces, which are also committed
to partial maintaining of the power and 24-hour wireless Internet service to it. Sites for
the third station are sought near Colonsay (Figure 5.6); this location would be optimal for
triangulation required for accurate location of seismic events.

Figure 7.5 Existing and proposed digital seismic stations near Saskatoon.

For consistent operation of a seismic network by a small University program, a high
degree of automation is required. Our goal is to achieve continuous and generally
automatic data acquisition, archiving, event detection, generation of event bulletins,
extraction of event windows, and displays. To achieve this, we have programmed an
STA/LTA (Short-Time-Average/Long-Time-Average) event detection algorithm and also
methods for record extraction and display. The resulting continuous seismic records as
well as time windows of extracted events can be shown on the public seismic display
(Figure 4.5).

With small cost, high degree of automation, expandability and flexibility, the approach
appears to be ideal for further expansion of the regional seismic network in southern
Saskatchewan. Additional stations would improve the ability to detect and accurately
characterize seismic event, and contribute important data for student training and public
interest and education. With the design described above, only quiet locations with AC
power and Internet connections are needed, and neither of these requirements is difficult
to satisfy in Saskatchewan. Currently, we are looking for three types of land owners who
may, in our opinion, be interested in and benefit from installation of such seismic
stations: 1) mining (particularly potash) operations; 2) high-speed Internet provider
networks; and 3) rural high schools. The last of these options is particularly attractive, as
it would provide the students with a unique opportunity for hands-on research related to
their land, to participate in an exciting, quantitative natural science, and at the same time
to make tangible contribution to the global activity for monitoring earthquakes.

53

8 Low-cost continuous seismic acquisition utilizing
open-source software

In this Chapter, in I describe the design of the seismograph that I built recently, with
particular emphasis of the real-time Internet data exchange. The Chapter is based on the
paper by Chubak and Morozov (2008). The key points of the approach are its low-cost
(the complete system costs about 6 times less than comparable Taurus seismograph by
Nanometrics), open-source software, high degree of automation, and seamless data
streaming in a customizable data processing and analysis. As a sample of such analysis, I
present my implementation of the so-called STA/LTA event detection algorithm.

8.1 Introduction
Continuous monitoring of regional seismicity is important for locating earthquakes and
the mitigation of earthquake hazards. In Saskatchewan, this is currently only performed
by our group at the University of Saskatchewan. We aim at a robust, low-maintenance
and low-cost solution with full automation of data acquisition, archiving, and processing.
This is achieved through building inexpensive multichannel digital data loggers and
utilizing open-source software to transmit the continuous records over a TCP/IP network
connection.

The system consists of three components: acquisition data server (located near the
geophones), data relay program (located in the data centre) and client programs used for
displaying, processing, and saving the data. Various clients are available, from simple
display tools to a direct feed into the IGeoS processing package. This allows practically
unlimited flexibility of processing applied to the real-time data stream, from immediate
archiving to creating ring buffers, identifying events, or producing various data displays.
Web server is used to display system status and set acquisition parameters. Currently, the
system has two operational stations near Saskatoon, Saskatchewan, with more stations
planned.

As a seismic monitoring system operated by a small University group with, our
hardware/software solution is designed to be a reliable and fully automated hardware and
software combination for collecting, transmitting, processing and storing seismic data.
While use of the system has been focused on a serving as a regional (1Hz) seismograph,
the network design and concept of direct feed into processing should also work well in
reservoir monitoring. The modular approach (server, relay and client) and documented
interface allow new clients to be written to integrate real time data in other applications
which could be useful even outside of the seismic community.

Considerable effort was spent to ensure that the system uses a minimum of network
bandwidth which makes it suitable for slower internet links found in remote locations. To
keep operating and maintenance costs at a minimum, the data is processed without the
need for an operator and events are automatically identified. Most significantly, the data
can be loaded directly into a full-featured geophysical processing package (IGeoS). This
allows a great deal of flexibility in the processing scheme. The software is open-source
(Linux-based), and the hardware is build from standard computer components and an

54

inexpensive commercially available 24-bit A/D system with GPS timing.

Figure 8.1 Seismic data network design

Three distinct components comprise the software: server, relay, and client (Figure 6.1).
Communication is handled over a standard TCP/IP network connection. The server
component is located at site of the data acquisition and transmits the digitized data to the
relay. Multiple servers can connect to a single relay which can pass the data unaltered to
the clients or first perform some timing synchronization. Clients can connect to the relay
and retrieve a list of available servers. They are then able to specify which servers to
receive the data stream from.

8.2 Server
The data acquisition server program is automatically started on boot, makes a network
socket connection to the relay program and begins to communicate the digitized values,
time marks and GPS coordinate and time strings as they are retrieved from the hardware.
Timing data may arrive significantly before or after the samples which they describe, and
thus it is necessary to synchronize the data before it is used. However, in order to keep
the server as simple and robust as possible, the synchronization is done off site, by the
relay or client programs.

If the network connection is broken, the data can be stored locally for later transmission
or retrieval via a web browser. When the network becomes available again, the
connection with the relay is reestablished automatically, and the transmission continues.
After a network outage, the stored data may be sent concurrently with new data until the
system is again working in real time. Optionally, the server can back up all data to a
local disk in addition to transmitting it.

To monitor the state of health (currently temperature) of the system, we use the 1wire
devices from Dallas Semiconductor. A model DS9097 serial to 1wire adapter is used and
a DS18S20 digital 1wire thermometer. The server software polls the thermometer at a
configurable interval and transmits a “state of health” package to the relay which includes
the time and temperature. If the temperature is outside of the configured high or low
alarm points an email is also generated and sent to the specified addresses.

55

8.3 Relay
The data relay program runs continuously at the data center computer and accepts
network connections from all data servers and from clients in the system (Figure 6.1). It
has two main functions: re-distributing data and synchronizing the timing. It acts as a
distribution point for the data which reduces the load on the internet connections from the
servers. With this design, only a single stream needs to be sent from the remote site
regardless of how many clients are receiving the data. Communication is formatted using
a small set of XML tags.

Each server makes a connection to the relay, identifies itself as a data source and provides
site information. The available site names are then transmitted to any clients that
connect. Clients connect to the relay and specify what type of data (e.g., raw or time-
synchronized) they expect. Synchronization is accomplished by creating a data queue
for both the time marks and the corresponding data packets in the relay.

8.4 Clients
Implementation of a client for this system is relatively simple: the program must only be
able to make a socket connection over a network to the relay and send and parse a few
XML tags. We have written a simple client which displays the real-time data from
selected channels. Another client program send the real-time data into the IGeoS
processing package (formerly SIA, Morozov and Smithson, 1997; Chubak and Morozov,
2006), which allows to perform any standard seismic processing and leverage the more
than 200 tools currently in the package. Because the data is fed directly into a processing
package, the result is limited only by the selection of tools made by the user. For
example, we use processing flows which save the data to a RAID concurrently with
performing filtering and preprocessing and applying an STA/LTA (Short Term Average /
Long Term Average) event detection. IGeoS client processing flows can also use 3D
OpenGL visualization or PostScript to display the data, and to produce various types of
file outputs, such as formatted in ASCII, SAC, or SEG-Y.

8.5 STA/LTA Event Detection
Seismic events are auto detected by a SIA tool utilizing an STA/LTA algorithm. First,
“short” and “long” window lengths are defined depending on the wavelength of interest.
Testing has shown that using a short window of approximately ¼ of the expected
wavelength and a long window of 100 times larger produces useful results though a great
deal of precision is not required. Depending on the noise in the system it may be useful
to have the short window cover several complete wavelengths. In this way short noise is
less likely to trigger an event. The signal is smoothed to reduce false triggers from noise
and the average absolute value of the signal is calculated for both the short and long
windows to produce the short and long term averages. During an event the Short Term
Average (STA) increases much faster than the Long Term Average (LTA) so the ratio
STA/LTA can be used to indicate an event. When the value of STA/LTA passes a
defined threshold an event is declared.

56

8.6 Current Installation
Mining and other human activities account for many of the seismic events in
Saskatchewan. These are of interest to the public and in many cases to the exploration
community as well. The first system we installed is located on the Whitecap Reserve
south of Saskatoon, SK in response to concerns that seismic activity from a nearby
military base might be affecting the structural integrity of the buildings (Figure 5.5;
Morozov et al., 2007). A second station is located at the UofS Geophysics test site east
of Saskatoon. From this location we have recently recorded a large, mb=3.2, seismic
event near Esterhazy, SK (Figure 6.2). We are currently looking for a site for the third
station of the network, which is necessary for accurate event location (Figure 5.5).

Figure 8.2 Esterhazy, SK event on Dec 23, 2007 recorded at station SKBG in Figure 2.

8.7 Conclusion
While network monitoring systems are not new, we believe that the use of open-source
software combined with commodity hardware provides low-cost and robust solution for
remote seismic acquisition. The unique (to our knowledge) integration of the data stream
into a processing package provides features and flexibility not found in other systems.
Finally, as a complete solution for seismic monitoring it is necessary only to provide the
appropriate hardware and a location with power and internet to begin collecting and
analyzing data.

57

9 Discussion and Conclusions
As a result of the contributions from this Thesis, development of IGeoS package is
sufficiently complete for it to be useful to geophysicists working on a variety of tasks.
However, IGeoS’s contribution to the community may not be limited to its current
functionality as it provides a framework to develop, manage and maintain geophysical
software. By developing code within a framework, the need to duplicate existing work is
avoided and the installation and maintenance of code is simplified.

The graphical interface significantly reduces the amount of time a new user needs to
spend to learn the scripting language. Since help functionality and documentation are
provided through the interface, it is possible to build and modify flows without the need
for extensive training.

3D visualization is provided through an abstracted OpenGL implementation which allows
IGeoS to serve not only as a processing system but as an interpretation and display
application. Semi-custom applications can be created by using the processing flow to
link widgets such as buttons or sliders to the inputs of other tools. This allows
researchers to rapidly produce an application which will perform tasks not found in other
packages without the need for any programming.

To effectively acquire and transfer seismic data from remote locations, a collection of
network tools were written. Their modular nature allows the tools to function
independently or within the IGeoS framework. When used with IGeoS, the data stream is
incorporated directly into the seismic processing flow so that standard processing steps
can be applied to the data. Multiple streams can be analyzed within a single processing
flow to locate events.

Finally, as most extensive development efforts, this project paved way for much more
potential further developments. Although IGeoS appears to be conceptually complete
with all major components and functionally designed, significant work is still required to
maintain and enhance many of the features within the code. Additional tools for PVM,
multi-processor, and multi-core parallelization need to be developed. Many of the
existing tools could benefit from the new interactive and graphical functionalities, and
many new data analysis approaches may emerge as a result of the enhanced capabilities
of the package. As an example, the development of a new 3D refraction statics package
(Jhajhria, 2009) has been largely facilitated by the ability to analyse the first-arrival
travel-time surfaces interactively in 3D. In the real-time data acquisition project and
exciting development would be to implement continuous data delivery to the Canadian
Seismograph Network, expanding the system, and making automated location and
parameter estimation of earthquakes.

58

8. References
Bohlen, T., 2002; Parallel 3-D viscoelastic finite difference seismic modeling, Computers
& Geosciences, 28, 887-899.

Chubak, G., and I. Morozov (2006a) Integrated Open-Source Geophysical Processing and
Visualization, 2006 CSEG Convention, Calgary, AB, May 2006.

Chubak, G., and I. Morozov (2006b). Integrated software framework for processing of
geophysical data, Computers & Geosciences, 32, 767-775.

Chubak, G., and I. Morozov (2007). Automated maintenance of geophysical software
from distributed web repositories, Computers & Geosciences, 33, 835-37.

Chubak, G., and I. Morozov (2008) Low-Cost Continuous Seismic Acquisition Solution
Utilizing Open-Source Software, 2008 CSEG Convention, Calgary, AB, May 2008.

Chubak, G., I. Morozov, and S. Blyth (2007a) Integrated Open-Source Geophysical
Processing and Visualization, 2007 CSEG Convention, Calgary, AB, May 2007.

Chubak, G., I. Morozov, and S. Blyth (2007b), Towards a comprehensive open-source
system for geophysical data processing and interpretation, CSEG Recorder, 32, Sept
2007, 52-62.

Fuchs, K., & G. Müller (1971), Computation of synthetic seismograms with the
reflectivity method and comparison with observations, Geophysical Journal of the Royal
Astronomical Society, 23, 417-433.

Kennett, B. L. N., 1993; Seismic Waves Propagation in Stratified Media, Cambridge
University press.

Morozov, I. B. (1998), 3D seismic processing monitor, Computers & Geosciences, 24,
285-288.

Morozov, I. B., & S. B. Smithson, (1997), A new system for multicomponent seismic
processing, Computers & Geosciences, 23, 689-696.

Morozov, I. B., Smithson, S. B., Chen, J., and Hollister, L. S. Generation of new
continental crust and terrane accretion in Southeastern Alaska and Western British
Columbia from P- and S-wave wide-angle Seismic Data (ACCRETE), (2001).
Tectonophysics, 341/1-4, 49-67.

Morozov, I., G. Chubak, & S. Blyth, (in press) Interactive 3D/2D visualization for
geophysical data processing and interpretation, Computers and Geosciences,
http://dx.doi.org/10.1016/j.cageo.2008.10.005, assessed Feb 15, 2009

Morozov, I., B. Reilkoff, and G, Chubak (2006). A generalized web service model for
geophysical data processing and modeling, Computers & Geosciences. 32, 1403-1410.

Morozov, I., G. Chubak, and L. Litwin, 2007. Rebuilding a regional seismographic
network in southern Saskatchewan; in Summary of Investigations 2007, Volume 1,
Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2007-4.1, CD-
ROM, Paper A-1, 8p.

59

Morozov, I.B., & K. G. Dueker (2003), Depth-domain processing of teleseismic receiver
functions and generalized three-dimensional imaging, Bulletin of the Seismological
Society of America, 93, 1984-1993.

Stockwell, Jr. J. W. (1999), The CWP/SU: Seismic Un*x Package, Computers &
Geosciences, 25, 415-419.

Templeton, M. E. & C.A. Gough (1999), Web Seismic Un*x: Making seismic reflection
processing more accessible, Computers & Geosciences, 25, 285-288.

Wessel P., & W. H. F. Smith (1995), New version of the Generic Mapping Tools
released, EOS Trans. American Geophysical Union., 76, 329.

Zelt C.A. & R.B. Smith (1992), Seismic travel-time inversion for 2-D crustal velocity
structure, Geophysical Journal International, 108, 16-34.

60

9 Appendices

9.1 Appendix A. Job example: 2D ray tracing model and GMT
base map in 3D (Figure 2.4)

As an example, we present fragments of the SIA job used to produce the 3D display
shown in Figure 2.4 We use the traditional DISCO-style job format, in which parameters
are identified by the positions of the corresponding tab-delimited input fields. Tool
descriptions start at tokens ‘*call’. Note that tool parameterizations can be extensive and
are structured by providing multiple “parameter lists” identified by the corresponding
keywords. Some of these lists are indicated by commentaries in the example. Lists
themselves may also span multiple lines and contain complex parameterization of the
display.

ACCREETE model in 3D

Job set-up. In particular, use kilometers for distance units

*setup
noapp
units km km

load the profile track line and midpoints from ASCII files

*call readtab table x-profile
x real 1
lat float
lon float
file all pc-coords.txt
*call readtab table midpoints
lon float
lat float 1
z float
file all ../MAP/midpoints-rev.table
 z 0. # draw midpoints at z=0.0

load the interpolated Moho depth grid

*call readtab map moho
lon float 1

61

lat float 2
z float
argrang lon -131.3 0.01 111
argrang lat 54.6 0.01 61
file all moho_depth.xyz

create graphic elements

*call graphic
backgr black
foregr black

line and fill styles:
line solid 1 gray line-shore
line solid 1 white line-borders
line solid 1 blue line-rivers
line dash 1 melon line-grid
fill none blue fill-wet
fill none blue fill-lakes

palette for Moho depth:

backgr -same-
foregr -same- # foreground of the same color as top of
the palette

#palette pal-moho gmtrainbow 25.0 31.0
#palette pal-moho gmtjet 25.0 31.0
palette pal-moho buor 25.0 31.0

buttons for interactive operation:
button button_trace Trace rays
pc-section exec trace
button button_save Save model
pc-section exec save
button button_summary Print summary
pc-section exec print.summary
button button_display Display data
pc-section print This option only prints in this demo!

Define 3D projectors

62

this will project 2D images onto profile cross-section:
*call view3d fence3D
fence x lon lat x-profile
geom sphere km

this will project 2D images onto the surface:
*call view3d surface3D
geom sphere km

Create surface image

*call image surface-maps
range-x -131 -130 # longitudes
range-y 55 56 # latitudes

map of the Moho
line none
surface lon lat z moho
pal-moho z # fill colors based on z (depth)

scatter plot of midpoints:
line points 3 red line-midpoints
3dtabs lon lat z
midpoints

Create 2D Accrete Portland Canal section

*incl pc-image.inc

Assemble the 3D image

*call image acc-3Dimage
rangec3 400 # 200-km viewing box

list selectable views, the first is the default:
view From above -131.5 55 0. -20 10. 1.0
view Globe 0 0

place 2-D cross-section in "fence" projection:
object pc-section fence3D

place 2-D sirface maps in "surface" projection:
object surface-maps surface3D

63

draw in a GMT basemap at "high" resolution:
coast -134 -129 52 58 high
surf land fill-dry
surf sea fill-wet
surf lakes fill-lakes
bndry shore line-shore
bndry natnl line-borders
bndry state line-borders
bndry marine line-borders
rivers r line-rivers
grid line line-grid 1.0 1.0

Moho depth color bar:

cscale vert 0.1 0.8 0.05 0.2 Moho depth (km)
pal-moho

image lighting:

light 0 0 1000 0.9 Illumination
diff white
amb white
spec cyan

buttons for interactive operation:

object button_trace
object button_save
object button_summary
object button_display

animation (autoplay):

a-rot 0.1 60 30 1.0

start the display server

*call gui
acc-3Dimage

request docking windows:

64

dockers
otree canvas # object tree
otree graph # graphics DB tree
prop # property editor

Note that the job above uses an included file pc-image.inc containing a description
of the 2D velocity cross-section along the Portland Canal line. This 2D image is projected
onto a “fence diagram’ along the line of cross-section and combined with the 2D
distribution of a source-receiver midpoints and a coastline plot from GMT. Various
editable items, such as coordinates, palettes, colours, and selections of displayed items do
not need to be described in the job and are available automatically from the
corresponding image objects. Finally, animation (rotation) about a tilted axis in 3D is also
illustrated.

Script pc-image.inc used in this example, and which can also be utilized for a
purely 2D cross-section display, is shown below.

graphics elements

*call graphic
backgr black
foregr black

palette draw-vp1
-0.3 red 0 blue
0 white 0.3 red

palettes for velocities

palette draw-vp gmtseis 5.5 8.4
palhue draw-vs color cont 2 5. 4 0.05 .95

line solid 1 green layers
line solid 1 blue cells-vert
line solid 1 yellow cells-diag
line solid 1 red rays

fill solid green velocity

RAYINVR 2D ray-tracing tool, loading model from file accrete.v.in1

65

*call rayinvr edit ps Accrete
vin vp accrete.v.in1
summary

Form the 2D velocity/interface cross-section image

*call image pc-section ##### plot the model and rays
range-x -150 200
range-y -50 100
#flip-y

axis-x 100 500 annot border-pen
X (km)

axis-y 10 100 annot border-pen
Depth (km)

velmod Accrete
layers layers
cells vert cells-vert
cells diag cells-diag
vs draw-vs
vp draw-vp

cscale vert 0.8 0.8 0.05 0.2 Vs # colour bar
draw-vs

cscale vert 0.6 0.8 0.05 0.2 Vp # colour bar
draw-vp

66

9.2 Appendix B. Interactive multi-threaded seismic processing
(Figure 4.6)

The following example illustrates seismic trace processing including a simple user
interaction. When a button is pressed, one record is loaded and displayed in three
different forms: as a time series, spectrogram, and amplitude spectrum (Figure 2.6 that
the three transformations are implemented using combinations of various filtering SIA
tools, and thus they can be easily customized by the user. Also note that the same tool
“plotrt” is used to generate all three displays.

Simple trace plot example used in real-time viewer development.
Seismic traces are read in from a file, their headers listed,
synthetic noise added,
and the wiggles, spectrogram, and spectra displayed in 2D

begin with optional text definitions

*define
model majin2o # model name
noise 0
compn 1 # component number to plot
outfile refl-{model}-0.0001-1.01.sia

the following is printed on the screen when the job is started

*info
 Real-time plotting demo for {model}

graphics settings and custom elements

*call graphic

buttons talking to tool “dskrd” below

button button1 Next trace
dskrd.1 exec next 1

button button2 Restart input
dskrd.1 reset

67

custom colors, lines, fills

color 0.2 0.4 0.6 trace-color # custom color
line solid 1 yellow wiggle-line
line solid 1 red spectrum-line
fill solid red trace-pos-fill
fill solid blue trace-neg-fill

palette ("hot," ported from GMT)

backgr -same-
foregr -same-

palette pal-ampl gmthot -1 1

load the records, askthe input to "hold" (wait for button
pressed)

*call dskrd outfile
hold

pre-process the records (cut at 1000 msec, count, time-shift,
extract one component, apply AGC etc.)

*call modify 1000

*call count chan

Note the evaluation of trace header expressions:

*call hdrmath
eval real shift=1000*(chan-1)

*call static shift apply

*call convert
extract 1

seqind comp integer 1 1

*call agc 300

*call noisegn gauss noise 8 20 80 120

68

Create a data entry point named 'traces_ready'
for spectral analysis and other steps

*call tee traces_ready

recut the traces into 100-ms segments to fit into multichannel
display

*call cuttrc 1000

*call table *
chan x shift timstrt _tsint_ _tnsam_ lasttr

form the trace display sequences

*call plotrt traces right
channel 5 1000 0.05 0.9 0.75 -0.08 peak 0.5

axis-t bl 100 500 %1.0f 1

*end keep # remove traces, keep header formatting

Begin spectral analysis

Start by reading from 'traces_ready' point

*call tap copy traces_ready

replace the traces with their log(Amplitude Spectra)

*call trcmath
spectr
lg

measure the peak amplitude and shift the amplitudes down by it

*call trcmath
ampl 90 100 mean ampl

*call trcmath
subtr ampl

69

Form spectra display

*call plotrt spectra right
combine replace
channel 1 100.0 0.05 0.07 0.7 0.15 peak 0.8
axis-t bl 10 20 %1.0f 1

*end keep # remove spectral traces

Begin spectrograms analysis

Read again from 'traces_ready' point

*call tap copy traces_ready

Form Rihaczek's instantaneous spectrum

*call spctrgr rih 50
frange 10 2 100

Form spectrogram display.
Note that the spectragram traces are multi-component

*call plotrt spcgram right
channel 1 1000 0.05 0.3 0.75 0.2 peak 1.0
#axis-t bl 100 500 %1.0f 1

*end # remove spectral traces

Build the final display

*call image trace-image
rangen2 1

traces traces.0
display wg
wiggle line wiggle-line
wiggle fill-pos trace-pos-fill
wiggle fill-neg trace-neg-fill

70

traces spectra.0
display wgva
wiggle line spectrum-line
wiggle fill-pos trace-pos-fill
#wiggle fill-neg trace-neg-fill

traces spcgram.0
#display wg
display vi
wiggle line wiggle-line
wiggle fill-pos trace-pos-fill
wiggle fill-neg trace-neg-fill
wiggle fill-pal pal-ampl

object button1
object button2

Start the viewer (or connect to a running viewer)

*call gui gui-traces
trace-image

layout horiz

dockers # request docking windows
otree
prop

