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1  Abstract 
IGeoS is an integrated open-source software framework for geophysical data processing 
under development at the UofS seismology group.  Unlike other systems, this processing 
monitor supports structured multicomponent seismic data streams, multidimensional data 
traces, and employs a unique backpropagation execution logic. This results in an unusual 
flexibility of processing, allowing the system to handle nearly any geophysical data.  

In this project, a modern and feature-rich Graphical User Interface (GUI) was developed 
for the system, allowing editing and submission of processing flows and interaction with 
running jobs. Multiple jobs can be executed in a distributed multi-processor networks and 
controlled from the same GUI. Jobs, in their turn, can also be parallelized to take 
advantage of parallel processing environments such as local area networks and Beowulf 
clusters. 

A 3D/2D interactive display server was created and integrated with the IGeoS 
geophysical data processing framework. With introduction of this major component, the 
IGeoS system becomes conceptually complete and potentially bridges the gap between 
the traditional processing and interpretation software. 

Finally, in a specialized application, network acquisition and relay components were 
written allowing IGeoS to be used for real-time applications.  The completion of this 
functionality makes the processing and display capabilities of IGeoS available to multiple 
streams of seismic data from potentially remote sites.  Seismic data can be acquired, 
transferred to the central server, processed, archived, and events picked and placed in 
database completely automatically.  
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2 Introduction 
Open-source software has become a significant and integral part of many computing 
environments.  The Linux operating system is perhaps the best known example and it is 
used in nearly all markets by academics, industry and government.  Geophysical software 
however, has not seen the same level of open-source development and is still dominated 
by commercial products from a few developers.  IGeoS (formerly SIA) has been in 
development for nearly 14 years as a batch-driven general processing package.  It was 
originally written to replace the commercial package Disco when it was no longer being 
supported.  The project grew into a full featured and robust system for geophysical use 
but it lacked an interface, integrated display tools, parallel capability, and other modern 
features that users expect.  The goal was not to simply replicate commercial projects but 
rather to find unique solutions to problems faced in ongoing research.   

My work on the project has focused mostly on the display, user interaction, and software 
updating components.  First, a user interface was designed and implemented allowing 
users to build processing flows, manage projects and access the electronic 
documentation.  Second, a generalized display tool was created to provide visualization 
and interaction with the data.  Finally, a number of other services were added to the 
package, such as an automated update and code management feature and facilities for 
transmitting and processing real time seismic data from remote sites. 

As a result of the present effort, the whole concept and software implementation of 
IGeoS were significantly enhanced, transforming it in to a versatile and convenient 
framework for developing software for many geophysical applications. Examples of 
current applications include 2D and 3D seismic and well-log processing, gravity 
processing and inversion, earthquake data analysis, 1-, 2-, and 3D seismic waveform 
modeling, travel-time modeling and inversion, and also continuous seismic monitoring 
using remote Internet seismographs. 

The complete IGeoS code, including all my contributions presented below, is available 
for downloading, installation, and updates from server at http://seisweb.usask.ca/igeos. 

 

2.1 Review of Existing Work 
Numerous software projects both commercial and open-source have been created to meet 
the needs of geophysicists.  Yet, there is still a demand within the geophysical 
community for software that is both easy to use and highly customizable.  Commercial 
software focuses on performing specific tasks within a consistent framework and 
interface but is not easily adapted to non-standard practices.  By contrast, most open-
source (geophysical) projects to date lack well-developed interfaces and are not broad 
enough in their scopes to serve as primary tools for data processing and research. 

Seismic Unix (SU) is perhaps the best-known open-source geophysical package.  It was 
developed and maintained by the Center for Wave Phenomena (CWP) consortium at the 
Colorado School of Mines.  It contains a large number of tools in a well-documented and 
maintained package.  Each tool is an independent UNIX program that must adhere to a 
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strict input/output structure as the data is passed using file pipes.  The tools are arranged 
by using standard UNIX shell scripts to organize data processing flows.  While the 
package is useful and broadly used, it is still missing an integrated user interface as well 
as a consistent method for displaying and interacting with data.  File pipes, inherently 
unidirectional, do not easily allow for highly interactive processing flows as there is no 
method for propagating changes to tools located earlier in the sequence.  The file pipe 
structure also makes it difficult to build a user interface that would be able to interact 
with the tools concurrently.  

Another well-known project is the Stanford Exploration Project library (SEPlib) currently 
located at http://sepwww.stanford.edu/software/seplib/.  It is similar to Seismic Unix in 
basic design and it was actually the parent project to SU.  File pipes are used to pass data 
between different programs, which each serve as a processing tool.  Programs must read 
and write the specified format to be compatible with other SEPlib programs.  Parallel 
functions are available by using MPI to submit multiple copies of the processing flow 
across a cluster of computers.  SEPlib has been modified, to handle irregularly sampled 
data commonly found in 3D seismic surveys, and is now called SEP3D.  There are a few 
graphical display programs and provision to produce plots using a library known as 
‘vplot.’  Vplot, originally written by Dave Hale, allows the scaling and re-sampling of 
vectors to improve the compatibility between different displays and printers.   

Madagascar (formerly RSF) is a recent effort by Sergey Fomel to produce a geophysical 
processing package designed for reproducible computing rather than production 
processing. Its design was also inspired by SEPlib. Madagascar was designed in response 
to difficulties that researchers have in reproducing scientific work when complex, multi-
stage software is involved.  The problems are twofold. First, the exact sequence of 
processing steps is rarely recorded, and second, new software versions may produce 
different results.  Madagascar (like most packages) is driven by scripts which can be 
saved to preserve the exact processing sequence.  To avoid changes to results from 
software revisions Madagascar uses a test driven development model.  This means that 
when new code is written, a specification is first developed, and all developments and 
changes to the code must meet that specification. 

2.2 Structure of this thesis 
This thesis presents author’s contributions to a fairly large and versatile software project 
(IGeoS) and represents a compilation of the following publications: 

Chapter 3 is based on Chubak and Morozov (2006a and b). In this Chapter, I present the 
recent architecture of the IGeoS package, its goals and relation to other existing system. 
In particular, I focus on the newly developed Graphical User Interface (GUI), 
visualization, and parallelization capabilities. 

Chapter 4 is based on my contribution to Morozov et al (in press). In this Chapter, I 
describe the unique interactive, parallel, 3D visualization program that was derived from 
the GUI above. 

In Chapter 5, based on Chubak and Morozov (2007), I describe an automated system 
code maintenance by using distributed web repositories. 
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Chapter 6 (Chubak et al, 2007a and b) emphasizes the new aspect of the package as a 
framework for uniform geophysical code development and gives several advanced 
examples of its application. 

Chapter 7, based on Morozov et al. (2007), I present the rationale for seismic monitoring 
in Saskatchewan and describe a highly automated, low-cost hardware and software 
solution.   The technical details of its implementation are further developed in Chapter 8 
(Chubak and Morozov, 2008), where a complete system for seismic earthquake 
monitoring currently operating at the UofS is described. This system is not directly 
related to IGeoS package; however, it is currently working in close integration with it.  

In each Chapter, the text of the original published paper is mostly preserved with the 
corresponding changes made to section and figure numbering. The reference lists of all 
publications are collated at the end of this thesis. Some images from the original papers 
were modified. 

Finally, Chapter 9 summarizes the general conclusions of this work and offers 
recommendations for further development of this geophysical software project. 
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3 Integrated software framework for processing of 
geophysical data 

This Chapter is based on publications by Chubak and Morozov (2006a and b). These 
papers describe the new architecture of the IGeoS package. Since this Thesis project has 
started, this architecture has changed substantially from its initial design (Morozov and 
Smithson, 1997). The SIA package was redesigned to using C++ as its core development 
language, parallelized by using the Parallel Virtual Machine, switched to using dynamic 
linking, and adapted to using Qt and interactive graphics. My development of a modern, 
Qt-based graphical interface set the project unique among other academic, and even 
commercial data processing systems. Furthermore, the package was extended to non-
seismic applications, such as gravity inversion and modeling and real-time data 
acquisition. To reflect these changes, the package was recently renamed to IGeoS (for 
Integrated GeoScience software), under which name it is being continuously developed. 
These changes led to switching the emphasis from the “wide-angle seismic processing 
system” (Morozov and Smithson, 1997) to a much broader framework for geophysical 
data processing. This change of viewpoint became possible largely to the contributions 
from the present thesis, summarized in the Chapter below. 

3.1 Introduction 
Analysis of geophysical data nearly always involves application of sophisticated and 
multi-stage processing and inversion. With volumes of data and resolution of the datasets 
exploding in the recent years in nearly every field, the demand for computer packages 
facilitating handling, processing, analysis, and interpretation of large and complex 
datasets is growing. This particularly applies to exploration seismology, where 
development of processing packages has grown into a thriving industry. A number of 
integrated software systems, mostly specialized and streamlined for reflection seismic 
data, are available. 

Although highly advanced, commercial processing packages are still built for specialized 
industry users. For a broader geophysical community, reliance on such software may not 
be satisfactory for several reasons. First, while being highly efficient in their primary 
fields of application (typically, 2- or 3-D common mid-point reflection data processing), 
commercial packages could become awkward in handling other types of data. Examples 
from seismology include wide-aperture reflection-refraction or earthquake data, where 
native support for flexible, multi-component processing, spherical-Earth geometry, and 
travel-time analysis is critical. Second, commercial packages often require installation of 
other systems (e.g., databases or rendering systems) whose support could be difficult or 
expensive in a University environment. And finally, licensing costs are often prohibitive, 
particularly when utilizing large multi-processor computer systems.  

Open-source seismic processing provides a low-cost alternative to commercial software 
and, with an appropriately directed development, an ability to adapt to the changing 
research needs. The best-known examples of such kind are Stanford Exploration Project 
(SEP) software, SIOSEIS (http://sioseis.ucsd.edu/), and Seismic Un*x, a free reflection 
processing system developed at the Colorado School of Mines (Stockwell, 1999). 
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Seismic Un*x has been broadly used in research and teaching seismology (e.g., 
Templeton & Gough, 1998) and also in smaller-scale seismic processing in the industry. 
However, all these packages are still strongly optimized for reflection processing, and 
their ability to handle more complex datasets is limited. Examples of such complex 
datasets commonly encountered in refraction and earthquake seismology include 
multicomponent, variable-length and sampling interval seismic records combined travel 
times and amplitudes. Crustal wide-angle seismology requires an ability to account for 
the Earth’s curvature during data processing and in some cases uses thousands of files for 
data input. In a broader perspective, a system that could handle borehole logs, potential-
field data, velocity and gravity models, and offer improved PostScript rendering 
capabilities would help to integrate the data analysis and reduce the need for data 
reformatting. 

Here, we present our ongoing development of a system providing the flexibility, and 
functionality that are found neither in Seismic Un*x nor commercial packages. The 
system, called SIA (no spelling out available!), was initially developed at the University 
of Wyoming and continued at the University of Saskatchewan 
(http://seisweb.usask.ca/SIA).  It represents a decade of extensive efforts for integration 
of academic-style seismic data analysis with the polish and performance of a commercial 
seismic processor.  

The guiding principle of SIA design is decentralization of processing and its abstraction 
from the content of the character of the particular seismic and geophysical dataset. With 
the recent modifications of the system, this idea was carried further, to an introduction of 
dynamic linking, conversion to C++, parallelization, and integration with a Graphical 
User Interface (GUI). In the following, we describe the development of the package since 
the previous publications (Morozov and Smithson, 1997; Morozov, 1998). We start with 
a brief recast of the key design concepts and emphasize the new parallel and GUI 
functionalities. 

3.2 SIA seismic and geophysical data processing system 
Initially, SIA started as a replacement for Cogniseis’s DISCO processing system to 
provide a means to use many modules written by the students of the Program for Crustal 
Studies at the University of Wyoming. Consequently, its key design requirements were 
typical of massive reflection seismic processing: 1) high throughput achieved by 
processing tools (modules) operating in a common address space, with custom 
executables built for each job, 2) seismic processing sequences (“jobs”) described using a 
specialized scripting language and executed in (normally) unattended processes, and 3) a 
multi-user development and processing environment. In addition, several extensions of 
the reflection data processing model were made, and particularly, original 
backpropagation execution logic was introduced (Morozov and Smithson, 1997). The 
system supported (as it does now) processing scripts similar to those of DISCO.  

The structure of an SIA data processing flow, implemented as C++ class named 
PROJECT, is shown schematically in Figure 1.1.  
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Figure 3.1 Structure of SIA processing flow, represented by class PROJECT (modified after Morozov 

and Smithson, 1997). Processing flows consist of linked sequences of tools sharing structured 
trace ensemble gathers (normally corresponding to multicomponent seismic records), 
database tables, and various custom data objects. Non-blocking PVM messages are used for 
communication of flow with GUI, other flows, and services.  Note that it has no predefined 
mechanism for propagating data along the sequence of tools, and hence no dependence on 
data types. 

 

Several tools are arranged in a sequence according to the processor’s requirements. Each 
of the tools corresponds to a C++ class (referred to as “module” by Morozov and 
Smithson, 1997) implementing the “Edit Phase” (parameter input) and “Process Phase” 
(trace processing) methods. These are the only two methods required for seismic 
processing. Additional methods (such as providing dynamically changing tool names or 
progress indicators) can be implemented by the modules requiring closer integration with 
the GUI. The modules can also post their objects (such as velocity models) for their use 
by other modules in the flow. In addition, the modules have access to globally visible 
C++ objects providing the SIA system monitor, database, and the Parallel Virtual 
Machine (PVM) functionalities. All these classes are stored in precompiled object 
libraries and linked dynamically from shared libraries when the flow is built and started 
from the GUI or a batch script. 

Unlike traditional seismic processing systems (e.g., DISCO, ProMAX, SEPlib, SIOSEIS, 
or Seismic Un*x) the system has no special input modules and expects no trace data at its 
input. Some tools (such as performing database operation or plotting) do not perform any 
operations with the traces, and the corresponding modules do not need to implement the 
Process Phase. This makes the system more flexible, making it a useful framework for 
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more than just seismic data. 

From any module, seismic traces are accessed by contacting the monitor via 
SIA.input() and SIA.output() methods. These methods return pointers to the 
structured input and output trace data gathers shared by the adjacent tools (Fig. 1.1; cf. 
Morozov and Smithson, 1997). The flow monitor takes no part in moving the traces 
through the tool sequence, and the modules are free to modify the states of both of their 
inputs and outputs. This could result in data propagation pattern within the flow that 
could become elaborate (Morozov, 1998); however, for a typical single-trace filtering 
operation used in most seismic tools, the Process Phase code is quite straightforward: 

 
 boolean FILTER::process() { 
  TRACE *t = SIA.input()->pass_trace(SIA.output()); 
  if ( t ) { 
    filter(t); 
    return OK; 
  } 
  return FAIL; 
} 

 

Here, pass_trace(…) method transfers the trace to the output of the tool, return 
OK statement informs the monitor that the module has produced an output, and return 
FAIL is used to request more input data (Morozov and Smithson, 1997). The seismic 
trace is represented by an object of class TRACE that provides access to all of its 
formatting, data, and header information. Trace headers are free-format and are fully 
customizable by the user (Morozov and Smithson, 1997). The method 
filter(TRACE*) above should implement the desired filtering of trace t.  

The operation of the monitor is independent of the character of the data being processed 
and can be briefly summarized as follows (Morozov and Smithson, 1997).  When the job 
is started, all data gathers are emptied and the modules are called recursively in reverse 
order, starting from the last one to the module currently marked with the “end-of-file” 
flag.  Once a module returns OK (as in the example above), the process is repeated again 
from the end of the flow.  If all modules return FAIL, the end-of-file flag is moved to the 
next (end-of-file) module, and the process is repeated until no modules produce any 
outputs. This simple scheme resembling the backpropagation inference engine of the 
programming language PROLOG maintains the minimum possible number of traces in 
the data buffers and allows the modules to fully control the data flow and termination of 
the process. 

Because the sequence of tool invocations in SIA is driven by a logical inference 
mechanism rather than by the input data, no restrictions on the types of data or character 
of processing are imposed. Data can be loaded, removed, or directed backward in the 
processing sequence, or the flow could operate without input data at all. In the course of 
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its use in several areas of geophysics (mainly wide-aperture, reflection, and teleseismic 
seismology, and recently 3-D potential fields), data types were considerably generalized 
and several additional system features were implemented (Figure 1.1): 

1) Variable data formats, sampling intervals, record lengths and time starts. 

2) “Traces” can now contain linear arrays (seismic records) or 2- and 3-D arrays 
(multicomponent seismic records, or 2-D grids used in potential field processing). 

3) “Tools” can be represented by binary codes or macro-commands combining 
groups of other tools with coherent parameterization optimized for a particular 
task, Macro-commands can be defined by any user.  

4) Graphics subsystem for rendering complex images in PostScript and building 
custom Graphical User Interfaces;  

5) Extensive use of command line, trace headers, and an integrated job text 
preprocessor for flexible tool parameterization. 

6) Maintenance utilities including automatically generated HTML documentation 
and tools for generation of macro-commands and processing examples (see 
http://seisweb.usask.ca/SIA/examples/). 

7) Web service allowing execution of complex custom flows on remote systems and 
providing software updates. This service was developed after the initial version of 
this paper was submitted and is described in a separate paper (see 
http://seisweb.usask.ca/SIA/ws.php; Morozov et al., 2007). 

 

3.3 Development 
Addition of new tools into the generalized processing framework (Figure 1.1) fills it with 
the content for the particular area of application. Compared to the original version 
(Morozov and Smithson, 1997), code development for the system was significantly 
simplified, mainly due to the use of C++ encapsulation and inheritance, dynamic linking, 
and improved maintenance and documentation support. The addition of new tools does 
not require any modification of the monitoring program and can be done by the users. 
Graduate Geophysics students at the University of Saskatchewan now routinely 
contribute new tools as parts of their class projects. Code templates are available for the 
basic methods of data handling, such as one trace in – one trace out, a buffered single 
gather, or a sliding trace window (see http://seisweb.usask.ca/SIA/examples/templates/).  

Although the old code based on the C language (Morozov and Smithson, 1997) is still 
fully supported, we use the C++ model for all new development. In this model, an SIA 
tool named, for example, mytool is described by a “parameter definition file” 
mytool.mpar.   This file contains descriptions of all module’s parameters, 
documentation, C++, C, or Fortran codes or object libraries used for its building. This file 
is used by a system utility to generate the corresponding UNIX make file, resolve library 
dependencies, and to create both HTML pages and the on-line documentation displayed 
by the GUI. 
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Apart from  mytool.mpar, a single C++ file containing the C function void 
*mytool_init() must also be provided. This function is called once during flow 
initialization and returns a pointer to the module’s data object. Normally, it simply 
returns new MYTOOL, where class  MYTOOL is derived from a base class SIA_MODULE 
and overloads (if needed) two of its methods: 

1) int MYTOOL::edit() – the Edit Phase performing parameter input. It returns 
an integer status specifying whether the module needs to be called during the 
Process or end-of-file Phases, 

2) boolean MYTOOL::process()- the Process Phase called when data objects 
are propagated through the flow, as described above. 

To implement the two methods, no knowledge about the monitor operation or presence of 
other tools is required. Along with MYTOOL class, any number of other C/C++, or Fortran 
codes can be included and placed into the shared module library. Libraries of C and 
Fortran subroutines and C++ classes (such as performing Fourier transforms, filtering, 
Least Squares inversion, and implementing complex arithmetic and Matlab-like matrix 
manipulations) are provided to facilitate development. In our experience, a student 
familiar with C++ can usually develop a reasonably complex tool in several days, 

The configuration of the system allows maintaining multiple versions of the binaries for 
different computer architectures from a single set of source codes. In such a way, the 
system was supported at the University of Wyoming and Rice University under Sun 
Solaris, 32- and 64-bit SGI Irix, and recently under 32- and 64-bit Red Hat Enterprise 
Linux at the University of Saskatchewan. 

Accumulation and exchange of processing expertise is as important for working on 
complex research projects as algorithm development, particularly in an educational 
environment. To date, a limited support for systematic documentation is facilitated in SIA 
by a special tool posting fragments of job scripts in a common database. Any user can 
select a portion of a processing flow, specify a name and a category for the example, and 
post it where it can be viewed by others (http://seisweb.usask.ca/SIA/examples). Similar 
tools create macro-commands and build a library of standard default configurations for 
the various tools. In addition, processing examples can be simply cut and pasted from, for 
example, an Internet browser or email. 

3.4 Parallelization 
The complete processing flow objects can be copied across the PVM interface   (Figure 
1.1) and executed separate processes on the same or remote hosts. This is the normal 
mode of GUI operation on multiprocessor subsystems (below), in which all of the 
computationally-intensive data processing is performed on remote compute servers 
without overloading the GUI host. Some tools (such as flow, used to organize parallel 
processing; see http://seisweb.usask.ca/SIA/modules/flow/mod.html) spawn groups of 
processing sub-flows of their own. All processes communicate between each other and 
with the GUI using printf(…) – like messages facilitated by the SIA PVM interface. 
Along with these messages, the processes also exchange data traces, database tables, and 
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other objects. Execution of the processes is asynchronous, with message queuing and 
retrieval handled by PVM libraries. 

Due to encapsulation of the entire processing in a single PROJECT object (Figure 1.1), 
sub-flows can also be invoked as parts of specialized algorithms. For example, such sub-
flows were used to implement custom processing within the loop of generalized pre-stack 
seismic migration (Morozov and Dueker, 2003). 

In order to manage submissions of specialized remote processes, an additional layer of 
abstraction was created. The user is allowed to define groups of compute hosts and 
applications assigned to the execution of specific tasks, such as running sub-flows, 
performing interactive displays, or creating log files. As a result, the tools do not have to 
specify the exact host and program names but use these task names in order to invoke 
these applications. For example, depending on the user’s definition of “psview”, a 
request for a psview executes ghostview, kghostview, display, or other 
PostScript viewing programs on different hosts. In a classroom setting, this technique 
could provide a near-synchronous cloning of displays on multiple computer screens. 
Also, parallel jobs can be easily reconfigured for using fewer or more nodes without any 
changes in their parameters, simply by changing the submission configuration (Figure 
1.2). 

 

 
Figure 3.2  Process submission module of GUI, showing machines available to user via PVM, 

available task names, types of submission (e.g., via PVM or UNIX shell), and formats of 
corresponding program calls. Tasks specify symbolic names of actions requested by 
processing flows (Figure 1.1), such as: “master” (for master flow processes), “compute” 
(embedded sub-flows), “psview” or “xview” (display PostScript or interactive X-windows 
graphics, respectively), and others. By checking appropriate lines in this list, flow can be 
executed on different host configurations without changing its parameters.  Note that 
machines listed in this view could represent individual compute hosts or their groups. 

 

Finally, some tools can generate slave processes that do not execute processing flows of 
the kind shown in Fig. 1.1 yet employ the same PVM communication mechanism. For 
example, this approach was used to implement 3-D visco-elastic finite-difference 
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modeling integrated into the processing system through module efd3d 
(http://seisweb.usask.ca/SIA/modules/efd3d/mod.html). In this case, model building is 
performed by broadcasting the corresponding instructions from the Process Phase of 
efd3d, followed by time stepping, editing, and output instructions used to control and 
synchronize the wavefield simulation.  

3.5 Graphical User Interface 
As with other similar projects (SEP, Seismic Un*x, SIOSEIS), the advantages of batch 
(unattended) processing of large volumes of data have historically come at the expense of 
an intuitive and consistent graphical user interface. Processing jobs had to be described 
using either UNIX shell or specialized scripts, which always resulted in a significant 
learning curve and increased the likelihood of errors. A specialized GUI would relieve 
the processor of scripting, give the system a modern look and feel, and simplify learning 
by bringing all the documentation to the user’s fingertips. Recently, a modern graphical 
user interface (GUI) was designed for the SIA system (Figure 1.3).  

 
Figure 3.3 Main SIA Graphical Interface window including: a) selectable tool packages, b) tool 

library, c) multiple-job flow editor; d) parameterization of selected tool; e) job monitor, and 
f) status line giving brief information about any item at which cursor is pointing. Job in front 
of window (c) executes interactive 2-D gravity modeling, and job in back performs 1-D 
synthetic seismic modeling using reflectivity method (Fuchs & Müller, 1971). For a compact 
display, tool parameterizations can be hidden leaving only one-line summaries that may 
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change to display job progress (window c). Job flow editor windows (c) also include tool bars 
providing flow-related functionality. 

 

The GUI is based on the cross-platform Qt libraries from Trolltech (now Nokia), the 
same libraries on which the popular KDE Linux interface is based. Using Qt relieved us 
of any X-windows event handling and allowed to incorporate many of the most up-to 
date GUI design approaches, such as the multiple-document interface, window docking, 
themes, and platform-independent configuration. Although currently we perform all our 
development under Linux, other UNIX-type systems such as Solaris, BSD, or Apple's 
OSX should also work with minimal effort.  

The main GUIU frame is subdivided into four components that are used most often: the 
tool library, current module parameters, job editor, and job monitor (Figure 1.3). When 
the job flow is edited and submitted for execution, the corresponding PROJECT object is 
spawned to the appropriate host(s) and executed. During its operation, PROJECT 
periodically sends information messages to the GUI process, and some of these messages 
are displayed in the job monitor window. In principle, running jobs may also be 
programmed to alter some of their parameters which will be immediately displayed by 
the job editor. At the same time, PROJECT is also constantly listening to PVM messages 
from the GUI, and through these messages, the user can control the remote execution of 
the flow. Note that different running flows, even those submitted from the same job 
editor, do not interfere with each other and are independently managed by the monitor. 

The tool library (Figures 1.3a,b) offers access to over 220 processing tools, about 30 of  
which are to various degrees experimental.  The tools are arranged into packages (e.g., 
reflection, travel-time, earthquake, potential field data processing, graphics, or 
development) which may be tailored by the administrators to meet the needs of a variety 
of users. Within each package, groups of tools (such as input/output, plotting, etc.) are 
displayed on tab panes (Figure 1.3). A mouse click action on a tool displays its 
documentation, similar to the one posted at http://seisweb.usask.ca/SIA/sia-index.html. 
As with ProMAX, typing within the library window invokes a search utility that attempts 
a keyword search for a tool. When a tool is found, it can be dragged and dropped into the 
processing flow. 

Because the system is intended for users working in different research areas, tools 
extracted from the different packages could have different pre-set default configurations. 
For example, applications of the Automatic Gain Control (AGC) in high-resolution, 
exploration, and earthquake seismology typically use very different time gate lengths. 
Therefore, we provide several initial configurations for the same AGC tool included in 
these three packages, and the user is allowed to select the most appropriate configuration. 

The job editor (Figure 1.3c) is the central component of the user interface. A multiple-
document interface allows several flows to be opened simultaneously, in which the user 
can edit and execute multiple jobs. Docking windows and tool bars allow a user to 
customize the layout of the program to make effective use of multi-display systems. 
Tools and configurations may be copied between jobs, saving the user time and reducing 
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entry errors. Clipboard functions, tool tips, and context-sensitive help are provided to 
further simplify usage. 

Jobs are assigned descriptive names that are passed to the flows during run time (Figure 
1.4) and are used to identify them in the job monitor. Job flow descriptions can be built 
from the tool libraries and examples, and they can also be imported into the interface by 
dropping text into the flow window. Once placed in the job editor, both tools and 
parameters can be rearranged by the drag and drop process, making it easy to correct 
mistakes or change settings. 

The job editor displays parameters of all tools in the form of a table (Figure 1.3c). 
Parameterization can be extended (for example, several hundred lines to describe seismic 
velocity models). Several types of parameters are currently defined (cf. Morozov and 
Smithson, 1997): 1) integer, real, double, character string, and Boolean values, 2) 
selectable and editable text lists, 3) colour, fill, line style, font, and color palette names 
used by the graphics subsystem, 4) file, module, or flow names, and 5) compute host 
names, including names of user-defined virtual clusters. Parameters of different types are 
rendered differently; for example, Boolean values are represented by check boxes, and 
selectable values – by drop-down lists. Colour highlighting distinguishes between the 
floating point, integer, and character values. 

Proper and sufficient documentation is critical in large-scale processing. At present, 
processing flow documentation is implemented by allowing the user to attach free-text 
commentaries to the modules, parameter lists, and parameter groups. The commentaries 
can be edited and displayed in tool tips. 

Once the job parameterization is complete, the flow is submitted for execution through a 
remote process communication interface utilizing the PVM (Figure 1.1). Jobs may be 
submitted either for parameter checks (Edit Phase only) or for full processing. If an error 
is detected or a message issued from a running job, the display of the job (if currently 
open) is automatically updated using context-dependent colour highlighting. The 
corresponding error messages are displayed in parameter tool tips and also saved in the 
job log. 

Current module parameterization occupies a permanent window in the GUI (Figure 1.3d) 
because of its continuous use during editing and also because some of the SIA modules 
can have quite extensive parameterizations. For example, module image 
(http://seisweb.usask.ca/SIA/modules/image/mod.html) currently offers 57 optional 
parameter lists to describe its various graphics elements. In the module parameterization 
window, these lists are displayed graphically in the form of a tree from which the lists 
can be dragged and dropped into the job editor.  

The job monitor (Figure 1.3e) is implemented by simply displaying the information PVM 
messages received from the running flows and relaying user’s commands back to them. 
Therefore, operation of job monitor is completely asynchronous and independent from 
the job editing sessions.  

In all GUI components, we make an extensive use of the drag and drop functions, tool 
tips and status lines to identify options and features while reducing screen clutter. The 



 

15 

fonts, colours and other options can be modified to improve their appearance. 

3.6 Discussion and conclusions 
Although initially designed to extend a reflection processing package (DISCO) to wide-
angle seismic data analysis (Morozov and Smithson, 1997), its generalized processing 
logic have allowed SIA to be extensible to a far broader range of applications.  Neither its 
processing flows nor core databases (Figure 1.4) utilize the specifics of seismic data 
analysis. The tools are not limited in their types of operation, and a number of non-
seismic applications were included into SIA (see http://seisweb.usask.ca/SIA/examples), 
with the benefits of uniform parameterization, GUI, interaction with other tools, web 
service, and unified software maintenance and documentation.  

The development of the system was driven by the needs of a fairly broad research 
program extending from shallow to regional and global seismology 
(http://seisweb.usask.ca/ibm/research.html). As a consequence of this broad scope, SIA 
offers capabilities for nearly complete reflection and wide-aperture seismic processing 
combined with support for multicomponent, variable-format data, extensive database 
capabilities, and input/output in several formats (e.g., SEG-2, SEGY, PASSCAL-SEGY, 
SEG-P, GSE3.0, CSS3.0, and SAC). Several original inversion codes (such as 2-D 
reflection and generalized 3-D receiver function migration, genetic algorithms, artificial 
neural networks, and parallel 1-D and 3-D finite difference modeling) were developed. 
Tools for 2-D and 3-D processing and inversion of potential fields were recently 
included. Interfaces to popular program packages, such as Datascope, Generic Mapping 
Tools (Wessel and Smith, 1995), rayinvr (Zelt & Smith, 1992), reflectivity (Fuchs & 
Müller, 1971), and Seismic Un*x, simplify interoperability with other approaches.  

Although SIA is being continuously developed, it already represents a fully functional 
system exceeding its commercial analogs in its scope and many other aspects important 
for academic researchers. With further development, it could provide an excellent 
research tool and software development and integration framework for many areas of 
fundamental and applied geophysics. 
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4 Interactive 3D/2D visualization for geophysical data 
processing and interpretation 

The development of a modern GUI interface (Chapter 3) laid the foundation for building 
other graphical capabilities of the system. By using the same general concepts, I wrote 
the initial “xviewer” program that supported an abstract and custom image display 
protocol. This program was further developed by Shannon Blyth (UofS undergraduate 
student), and my supervisor (I. Morozov) designed many processing examples and the 
corresponding client IGeoS tool functionalities utilizing this protocol.   This Chapter 
describes this protocol and its applications, based on the paper by Morozov et al. 
(currently in press in Computers and Geosciences).  

4.1 Introduction 
In several previous publications (Morozov and Smithson, 1997, 1998; Chubak and 
Morozov, 2006; Morozov et al., 2006), we described development of an open-source 
software package for geophysical data handling, analysis, and modeling, which we called 
SIA (http://seisweb.usask.ca/SIA). Started initially as a multicompnent seismic 
processing package, the approach proved to be quite unique in its broad scope covering 
the full spectrum of seismic, potential-field, and other geophysical data analysis, but 
particularly in its implementation including object-oriented design based on C++, 
dynamic linking, an integrated full-featured Graphical User Interface, parallel 
functionality, and web services (http://seisweb.usask.ca/SIA/ps.php). Its abstract, logic-
based back-propagation data handling model (Morozov and Smithson, 1997), the ease of 
implementing new tools, high code integration, and extensive documentation and 
development support allowed extending the system into a code development framework 
suitable for most tasks encountered in applied geophysics (Chubak and Morozov, 2006). 
Recently, an automatic software distribution and updating service 
(http://seisweb.usask.ca/SIA/cs.php) was added to the system (Chubak and Morozov, in 
press), which facilitated concurrent development and automatic maintenance of the 
package from source code developed by programmers collaborating across the web.  

In this paper, we continue presentation of the SIA framework and focus on its new 
component – general-purpose, customizable, interactive 3D/2D visualization server 
program. As with other components of the system, in designing this server, we 
emphasized universality, scalability, efficiency, and parallelism. The resulting code is 
nearly entirely content-agnostic and suitable for working with most types of geophysical 
data, in both passive (as data “viewer”) and interactive (“editor”) roles. 

Traditionally, geophysical software packages developed, for example, in the reflection 
seismic industry have been differentiated into “processing” and “interpretation” systems. 
Processing systems emphasize flow-based design, with numerous operations applied to 
the data in complex processing sequences, and only limited interactive functionality 
offered by the individual tools. Special emphasis is made on reproducibility of the results 
and batch (unattended) execution, often using multi-processor (up to several thousand 
nodes) computer networks. In the open-source community, several seismic processing 
systems were developed, such as the Seismic Un*x (Stockwell, 1999). However, these 
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systems still offer only basic user interfaces (essentially, UNIX and Perl shells) and most 
importantly, are restrictive in their data formats (typically SEGY-like formatted UNIX 
pipes or files), limited scopes and integration of the tools. 

By contrast, interpretation systems are visualization-centred and based on data viewers 
(for a 3D seismic open-source example see OpendTect, http://www2.opendtect.org/). In 
such a system, data organization follows spatial patterns, and system operation is mostly 
driven by data displays and user commands. Application of various “plug-in” tools is 
typically determined interactively by the user, and only a limited number of fast 
operations can be performed in real time. 

In our visualization approach, we endeavour to erase the above differentiation between 
processing and interpretation workflows and perform them on a common software base 
and user interface. As described below, complex images and user interfaces can be 
defined by the user as parts of SIA data processing flows. These images can then be 
rendered either in publication-quality PostScript (based on the interfaced GMT programs; 
Wessel and Smith, 1995) or using the new interactive OpenGL-based display server 
described here. Because the content of the display is entirely determined by the 
underlying processing, the display server can implement any functionality, such as 
displaying seismic data and performing gravity modeling and seismic ray tracing in the 
same session. Through direct access to GMT databases, the server is also able to include 
3D coastline base maps in its displays.  In addition, full seismic and other data processing 
capability is also available to the interpreter through the underlying batch flow capability. 

Below, we outline the design of the new SIA display server. In a short publication, it is 
not practical to describe either the features of the program or its code in detail, and 
therefore, we only emphasize the fundamental, “framework” aspect of the system by 
focusing on its data abstraction and processing/interpretation model while leaving aside 
its numerous applications. We begin with the underlying parallel object data 
communication protocol, followed by a summary of the key features of the software.  
Further, we explain how complex images are formed and interactivity programmed into 
the processing flows and present several application examples. In conclusion, we briefly 
discuss the significance and potential extensions of this approach.  

4.2 Object image protocol 
Job execution in the SIA system currently incorporates the Graphical User Interface 
(including processing flow editors, cluster configuration, etc.) and multiple data 
processing/modeling tasks. These programs operate in independent UNIX processes 
communicating via a Parallel Virtual Machine (PVM) interface (Chubak and Morozov, 
2006; Figure 4.1). Because of some concerns about the continuity of PVM support, its 
calls are wrapped into a single C++ class that could potentially be replaced with another 
inter-process communication library in the future. 
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Figure 4.1 Simplified SIA process communication. The Graphical User Interface spawns processing 

flows (boxes labelled “process”) and monitors their execution. If interactive graphics is 
requested in a flow, it starts a new display server or connects to an already running one. 
PVM supports two-way communication between the programs which may run on different 
compute hosts. Grey arrows represent the job monitor PVM messages (flows, data, signals) 
and black arrows – graphical objects (see text for discussion).   

 

The display server is started by a tool called “gui” included in the processing flows, and 
similarly to the GUI, it maintains two-way PVM communication with them (Figure 4.1). 
Processing flows can be configured to execute multiple displays across the network 
(Chubak and Morozov, 2006); however, for a single user and display host, the same 
server handles requests from all flows (Figure 4.1). Therefore, if needed, the resulting 
images can contain objects mapped from different processing flows distributed across the 
computer network. 

Inter-process communication is carried out using asynchronous tagged PVM messages 
(Figure 4.1). Tags are used for recognition of the message contents, and message formats 
are automatically converted between different computer architectures by the PVM 
interface.  

The use of PVM messages in the GUI (grey arrows in Figure 4.1) is different from the 
display server (black arrows). In the GUI, messages are used as instructions controlling 
program operation by submitting processing flows, passing signals and data, and 
retrieving results. By contrast, the display server uses PVM messages to maintain 
hierarchical trees of data objects representing the images being displayed, without 
interfering with the normal processing sequences. Identical image trees are stored on both 
the client (flow) and server sides, and data exchange is carried out automatically 
whenever either of these sides is updated. The communication is thus entirely bi-
directional and performed on the background, allowing construction of data displays as 
well as interactive editing tools. 

Schematically, the structure of an image tree is illustrated in Figure 4.2. Each node of the 
tree represents a C++ object that is able to move across the PVM interface (Figure 4.1). 
When an update to such an object is received by the display server, it performs the 
requested action. For example, the “canvas” object initiates a new display window or 
updates it, “layout” subdivides the window into layout grid, and other objects place their 
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respective images into the grid. Object “image” carries coordinate mapping information, 
and numerous components of the “graphics” database are not displayed themselves but 
provide image colours, line and fill styles, palettes, lighting, and other parameters (Figure 
4.2A group of objects (buttons, sliders, etc.) provide user controls that can be placed on 
the image for interactive functionality. 

 
Figure 4.2 Image tree for a hypothetical Graphical User Interface designed by the user. Each node 

corresponds to an object sent through the PVM communication pipe (black arrows in Figure 
4.1). Two copies of such a tree are maintained at both client (flow) and display server sides 
(Figure 4.1).   

Most importantly, the object image trees are included in neither the display server nor 
processing flow codes. The images are built entirely by the user by placing the 
appropriate SIA tools into the flows, as described below (examples are given in 
Appendices A and B). In particular, tools “image” provide most of the general-purpose 
objects (2D and 3D lines, surfaces, grids), and tool “graphic” introduces line and fill 
styles, layouts, markers, colour palettes, buttons, etc. In addition, specialized tools 
provide their own objects, such as 2D velocity and gravity models (tools “rayinvr,” 
“tracer,” and “grmod2”), or trace sections (tools “plot” and “plotrt”). In principle, 
whenever useful, any tool can be equipped with a graphical representation.. At the same 
time, the tools take no part in actually displaying the images, which maintain themselves 
in the image automatically, as described below. This makes the application code simple 
and robust. 

4.3 SIA 3D display server  
The display server is implemented by using Qt C++ graphics libraries (on which, for 
example, the popular KDE graphical environment under Linux is based), with complex 
3D/2D graphics using OpenGL. This ensures that the system will work on a wide variety 
of systems and takes advantage of the hardware acceleration on graphics cards and 
processors. It also allows native 3D rendering on stereoscopic displays, such as Geowall 
(http://geowall.geo.lsa.umich.edu/).  The use of C++ ensures the best possible 
performance and high code integration and reuse. The look and feel of the program is 
similar to that of typical modern graphical user interfaces (with drag and drop 
functionality, status lines, tool tips, and elegant window themes available), and code 
design follows the general style of Qt and OpenGL programming. 
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The only items in the display server window predefined by its code design are the main 
window menu along its top and the status bar in the bottom (Figure 2.3). The remaining 
main part of the window is subdivided by using docking windows and nested Qt layouts. 
Layouts are named, described in the processing job, and placed into the object trees 
together with other objects, which allows construction of both simple and complex 
displays (Figure 2.3). Note that this system of nested, named image frames is similar to 
the organization of frame sets in HTML. In addition to layouts, docking windows are 
used to hold service objects, such as the object directory tree displays, property editors, 
and custom control panels designed by the user. These docking windows also appear only 
when requested by the processing job, and they can be moved to any position on the 
screen and collapsed into toolbars during the interactive session. 

 

 
Figure 4.3 Nested layouts for generation of complex co-ordinated displays. Here, the top-level layout 

1 is indicated by grey, lower-level layouts 2 and 3 – by white colour and dashed contours, 
respectively. 

The display server program continuously watches its image object tree for updates and 
rebuilds the display whenever a modification to one of its objects is detected. These 
modifications can occur as a result of user actions or come from the associated processing 
flow(s) through the PVM connection. The character of displays is also determined by the 
objects themselves, and therefore new custom graphical objects can be introduced simply 
by adding classes into the system library. 

Along with objects representing the imaged geophysical content, the object tree includes 
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auxiliary graphical elements corresponding to Qt-derived classes. Currently, such objects 
include the object tree viewer, property editor (upper and lower left parts in Figures. 2.4-
2.6), axes and controls (colour bars, sliders, buttons, and spacers). The object tree and 
property editor allow the user to interact with the rendered objects and modify them, such 
as show/hide, change colours, or edit other parameters. 

 

 
Figure 4.4 Wide-angle crustal ray-tracing model from the ACCRETE wide-angle seismic experiment 

(Morozov et al., 2001). Property editor allows switching between displays shading using the 
P- and S-wave velocities, velocity ratios, or wireframe views. Red dots on the surface indicate 
the source-receiver midpoints. Coastline map is derived directly from GMT databases. Note 
the editing controls in the Properties menu. Rotation sliders (upper left) can be used for 
precise rotation around the vertical and horizontal axes. The floating window (inset) 
summarizes the graphical elements (colours, lines, palettes) that can also be edited in the 
Property editor. See Appendix A for job files used for this display. 
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Figure 4.5 Display of a reflection-refraction shot seismic record. Variable-area wiggle over variable-

intensity amplitude display is selected. Note the interactive editing options in the Property 
editor (lower left). GMT “jet” colour palette (originally re-implemented from Matlab) are 
used for trace background. Note that over 40 preset palettes are available in this tool, as well 
as throughout the system. 
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Figure 4.6 Emulation of the traditional continuous seismic record display. In this SIA job, we load 

seismic data from files or network interface, subdivide them into segments and display in a 
scrolling trace sequence (top in the right panel). For the most recent segment, a time-variant 
spectrogram (middle) and amplitude spectrum (bottom) are also computed and displayed 
simultaneously. In this example, buttons (bottom) are used to control the data input. 

 

Viewing directions and zoom levels are controlled by the mouse as it is done in other 3D 
interpretation programs.  Optionally, the image aspect ratio can be set to remain constant 
during screen resizing by modifying the underlying OpenGL transformation matrices. For 
large objects containing hundreds of thousands of elements, efficiency may become a 
serous issue. We addressed this issue by automatic resampling the images during 
rendering, depending on the current viewable area and screen resolution.  

An important enhancement of the SIA viewer compared to the traditional 3D displays 
(e.g., GoCad, OpendTect) is the availability of custom, user-configured “views,” such as 
plan or map views, fence diagrams, frontal cross-sections, projections of 2-D images into 
3-D, or preset zooms. These views are created using tool “view3d” and are also 
represented as named data objects on the image tree (Figure 4.2). In the image property 
editor, active views can be selected via drop-down menus, allowing quick transitions 
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between them. Figure 2.4 shows an example and Appendix A illustrates the use of this 
method for creating 3D displays.  

Any object on the image tree is allowed to implement an “auto-play” method which is 
called periodically by a separate thread on the viewer to perform various animations. In 
particular, auto-play of the image object (Figure 4.2) modifies the OpenGL 
transformation matrix causing continuous rotation, movement, or zooming the entire 
image in and out. Such animated displays are sometimes helpful during data 
interpretation or presentations of the results. As with other options, these playback 
operations are configured by the user and included in job parameterization for tool 
“image” (see Appendices A and B). 

From a programming standpoint, processing objects (tools) and most graphical objects 
are introduced into the SIA system by redefining functionality of the base SIA_MODULE 
class. For example, Figure 2.4 shows a 2D visualization using our re-implementation of 
the popular ray-tracing program rayinvr (Zelt and Smith, 1992). The program is 
interfaced in the SIA package using a tool called rayinvr, with its base data class named, 
by our convention, RAYINVR:  
class RAYINVR : public SIA_MODULE 
{ 
  CHARSTR module_name(); ///< name for the GUI 
  int edit();  ///< Edit phase (parameter input) 
  boolean process(); ///< Process phase (data processing) 
  UI_X *X();  ///< Accessor for the graphical object 
  boolean call(…); ///< custom operation performed by this tool 
  …  
} 

Here, method edit()defines the parameter input from the job (see examples below and 
in Appendix A)  and process()describes the tool functionality during data (in most 
cases, seismic trace) processing. Note the method X()returning a pointer to the object 
performing graphical representation of the model (Figure 2.4), also derived from the base 
graphical base class UI_X. When “rayinvr” is invoked in the job, this object gets 
attached to the image tree (Figure 4.2) and propagated to the server (Figure 4.1). 

On the display server (where no RAYINVR objects are available), an identical graphical 
object is created by a dynamically-linked subroutine rayinvr_X(), also placed on the 
image tree, and provides all the necessary information for the rendering system. The 
object builds its images by combining several OpenGL plotting modes (such as 
sequences of lines, triangles, quadrilaterals, and bitmaps) which are further converted by 
the display server to OpenGL call lists, optimized, and rendered on the available 
hardware. In addition to serving the graphics, the object can communicate to its mirror 
peer in the processing flow, and sometimes to perform data analysis (such as seismic ray 
tracing in this case).     

Note the method call(…) in the example above, which is available in many SIA tools 
and object-tree objects. These methods perform custom data operations requested, for 
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example, by buttons pressed on the user displays. In the case of “rayinvr” tool, these calls 
perform ray tracing, saving, or exporting the model into files (Figure 2.4). In the 
following section, we show some examples of how such interactive interfaces are 
designed. 

Finally, the display server supports stereoscopic displays by rendering OpenGL images in 
two frame buffers using slightly different viewing angles. We have tested this approach 
on our dual polarized-light projector GeoWall (http://geowall.org) system.    

4.4 Custom displays and user interfaces 
Interactive 3D or 2D displays are generated by regular SIA processing flows written in a 
scripting language resembling that of DISCO processing system (Morozov and Smithson, 
1997). Job flows can also be created, edited, executed, and saved in XML format when 
the graphical user environment is used (Chubak and Morozov, 2006). Below, we describe 
the general scheme of such displays and present several examples from different subject 
areas, with samples of the corresponding job scripts in Disco-like format shown in 
Appendix A. 

Generally, all SIA displays are created by combining the following key tools in the jobs 
(see http://seisweb.usask.ca/SIA/index/ and Appendix A): 

1) “Graphic” – selects or creates layouts, colours, line and fill styles, colour palettes, 
buttons, and other objects used in rendering. All these objects are given names 
(identifiers) by which they can be accessed by other tools; 

2) “Image ” – creates a sequence of objects from the data content, such as data grids 
and lines, and attaches them to the image object tree; 

3) “Gui” – sends the specified image trees to the display server. 

Several instances of “graphic” and “image” tools can be used to create complex displays. 

As a first example, interactive ray-tracing and travel-time modeling is perhaps the most 
important inversion approach employed in wide-angle crustal seismic studies. This 
procedure requires high-quality interactive graphics, which is limited even in the most 
popular modeling programs, such as rayinvr by Zelt and Smith (1992). Figure 2.4 shows 
an extension of rayinvr model in our system, using an example from ACCRETE seismic 
experiment (Morozov et al., 2001). Along with several enhancements (accurate 
correction for crooked-line geometry, detailed and non-surface consistent near-surface 
structure accounting for wide-angle shooting in a fjord, and simultaneous P- and S-wave 
ray tracing), the model now allows interactive viewing. Note that the model is created in 
a two-dimensional (2D) image, which is projected onto a fence diagram in 3D (Appendix 
A). The model can also be combined with other objects, such as base maps or seismic 
sections (Figure 2.4). Colour shading can be selected interactively for viewing the P- and 
S-wave velocities, velocity ratios, or Q (attenuation) parameters, or creating wireframe 
displays of the model structure. Over 40 preset plus user-defined colour palettes are 
available, and buttons can be used to perform ray tracing and printing (Figure 2.4). In the 
near future, the model will also allow interactive editing of its parameters (layer depths 
and velocities). 
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As a seismic example, Figure 2.5 shows a synthetic reflection shot gather. The display 
modes including one-and two-sided variable-area and variable-intensity plotting, trace 
gain, bias, and clipping, can be adjusted interactively in the Property editor (lower-left 
part of Figure 2.5). Note that the three-component synthetics were also computed within 
the SIA package. In another, interactive, example Figure 2.6 shows an implementation of 
a simple continuous seismic trace display. In the underlying processing flow, the data are 
loaded from a network connection or continuously updated “ringbuffer” files, filtered and 
displayed in the form of continuously moving waveforms. Optionally, spectral analysis or 
event detection algorithms can be included and the corresponding results displayed in the 
same image (Figure 2.6). In this example, the input is also blocked periodically allowing 
the user to retrieve one trace at a time by pressing a button on the display (Figure 2.6, 
Appendix B).  

A unique feature of the SIA display server is the availability of coastline data derived 
from the database files distributed with the Generic Mapping Tools (GMT) package 
(Wessel and Smith, 1995). Coastline contours (including rivers, channels, state and 
marine boundaries) and polygons are rendered directly in 3D and bypassing the need for 
map projections. Only a specification of the target map region is required, and the 
resulting image can be combined with any other objects and viewed interactively in 3D 
(Figure 2.4). The level of resolution is interactively selectable according to the 
specifications of the available GMT databases, and line and fill colours are editable from 
the object Property menu (Figures 2.4 and 2.6). Note that the GMT databases are 
accessed by the display server directly, and PVM link is free from transferring large data 
volumes, resulting in efficient and fast displays. 

4.5 Discussion and further development 
The most useful result of the development above could be in the enhancement of the 
geophysical data analysis by integration of its many components. For example, with the 
new 3D viewing capability, ray-tracing models (Figure 2.4) from multiple crossing lines 
can be inverted concurrently in a common display and performed together with gravity 
modeling and analysis of other data. Because the system is not limited to seismic record-
based processing, interactive gravity modeling can be readily incorporated in the same 
graphical framework (Figure 2.7). 
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Figure 4.7 Interactive 2D gravity modeling example. Several graphics objects (observed, modelled, 

and residual gravity profiles, and the density model) are posted by gravity modeling 
(grmod2) tool, and buttons added to illustrate the interactive functionality. Colour palette is 
used to represent the densities or, optionally, the rock types. 

 

Apart from populating the displays with additional graphics objects, an important line of 
potential development could be to expand the interpretation-style functionality described 
in the Introduction. Processing flows can also be sent through the PVM connection and 
placed on the image tree (Figure 4.2), and therefore they can be associated with the 
various items in the same display. In such a way, the display could become a data 
integration hub, with programmable processing flows feeding various types of data into 
it. 

Finally, the development of a user-customizable visualization server advances us to the 
ultimate goals of the project, which can be summarized, using analogies from the popular 
geophysical software packages, as follows: 

1) Open-source, modular seismic processing pipe similar to the Seismic Un*x but 
with a significantly broader data model and processing logic; 
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2) Modern graphical user environment and high-performance, common address 
space processing similar to ProMax or Disco-Focus;  

3) Parallel and distributed processing capability in excess of the above;  

4) Interactive 3D visualization similar to GoCad or OpendTect; 

5) 2D/3D potential-field data analysis and inversion capability;   

6) Geophysical “toolbox” processing versatility and style, ultimately resembling that 
of Matlab; 

7) Built-in access to “academic” GIS data and PostScript plotting, similar to GMT; 

8) Remote (Internet) data acquisition, real-time displays, and database capability, 
similar to Datascope or Antelope (http://brtt.com); 

9) Web-service operation (we are aware of no analogs to date); 

10) Automatic software distribution and updating from source code and collaborative 
development.  

11) Addition of graphical capabilities to the tools should improve the user experience 
and benefit most of the areas above.  

4.6 Conclusion 
A new 3D/2D interactive display server was developed for the SIA geophysical data 
processing framework (Chubak and Morozov, 2006). The server utilizes Qt and OpenGL 
graphics libraries, and takes advantage of the object-oriented and nearly content-agnostic 
design of the core SIA processing system. It operates by creating image object trees that 
are automatically propagated to the server(s) residing on remote hosts producing complex 
structured and interactive displays. We show applications of this approach to several 
areas of geophysics. 

With introduction of this last major component, the SIA system becomes conceptually 
complete and becomes capable for bridging the gap between the traditional processing 
and interpretation software. Its unusually broad scope includes: 1) high-performance, 
object-oriented data processing; 2) applications to many types of seismic and non-seismic 
geophysics; 3) parallel operation on multiprocessor computer networks, 4) processing 
web services; 5) support for collaboration and automatic software updating; and now 6) 
parallel, interactive, and animated 3D visualization. 
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5 Automated maintenance of geophysical software 
from distributed web repositories 

In this short Chapter, based on Chubak and Morozov (2007), I describe an automated 
system for code maintenance by using distributed web repositories, currently functional 
in IGeoS system. Such tools are unique in academic software and, to my knowledge, also 
in geophysical software industry. The concept that I proposed and implemented was 
inspired by the examples from open-source Linux software projects. Development of 
these tools have greatly simplified the maintenance of the package, which is now being 
operated on several types of computers in our lab, and  also downloaded and installed by 
numerous researchers worldwide. 

As in most computationally-intensive disciplines, geophysical data analysis involves 
numerous algorithms. Large volumes of code have been created, including complex 
multi-function processing systems, which are particularly well developed in reflection 
seismology (Stockwell 1999). In most cases, data management, processing, or modeling 
operations can be subdivided into smaller tasks (e.g., input/output, or some filtering), 
whose code could be standardized and reused. Ideally, good solutions to problems should 
be implemented once in a generic fashion so that others could benefit from them. Two 
critical issues arise in the development of such a general processing system: a) a versatile 
code integration protocol and a common processing environment suitable for its use in 
different applications are required, and b) with growing body of software, code 
maintenance tools are needed. Topic a) above was recently discussed by Chubak and 
Morozov (2006); in this note, we describe the development of topic b) in our geophysical 
data processing system.  

Within the academic community, the development of computer code is still generally 
performed in an ad hoc manner, without investing significant efforts in software 
distribution and maintenance.  Typical codes are developed by a single group, relatively 
compact, and can be directly exchanged by the researchers. However, in the more 
general, complex, and extensively developed packages used by numerous researchers 
(such as SU and GMT - Stockwell 1999; Wessel and Smith 1999), the need for consistent 
distribution support is already felt, leading to development of installation web sites and 
shell scripts.  

Complex software packages quickly become difficult to maintain.  For example, Seismic 
Un*x (SU; Stockwell, 1999) consists of several hundred programs that must be installed 
to use the package.  The SIA system (Morozov and Smithson, 1997; Morozov, 1998) 
includes over 100 modules in the dynamically shared library, over 200 tools written in a 
variety of languages, and numerous documentation files.  Each piece of software may 
have its own prerequisites (PVM, graphics, third-party software, etc.), compiler options 
and other configuration issues.  Installation and maintenance of such packages represents 
a significant investment of time and effort from the user. The traditional approach of 
using a configure script and the make utility to assist the user in the installation could 
become cumbersome as it is not designed for the diversity of code found in processing 
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packages, nor does it address the need to update only certain code without affecting the 
entire system.  Complex software systems thus require sets of specialized utilities  which 
could automate maintenance and simplify installation, ideally by means of a web-based 
update service keeping the codes up to date as they are being developed at multiple sites. 

Automated code updates are broadly used in modern software (such as Microsoft 
Windows or Adobe Acrobat). The open-source (particularly Linux) community is 
addressing the broader needs of updating and maintaining programs by using multiple 
software repositories.  Programs such as apt, yum, urpmi, and emerge provide the 
ability to easily update and install software on several types of Linux systems.  Using this 
model, we have implemented an automatic update and installation tools for the SIA 
system (Morozov and Smithson, 1997). 

SIA  represents a major effort for providing a common framework for data management 
and processing encountered in nearly any field of geophysics. The system is infinitely 
scalable, high data pass-through, capable of extensive seismic, travel-time, and potential-
field processing. It includes a feature-rich Graphical User Interface (GUI, Chubak and 
Morozov, 2006), interfaces to popular academic applications (such as SU and GMT), 
capabilities for parallel computations, can operate as a web service (Morozov et al., 
2006), and the development of a 2-/3-D OpenGL graphics layer is underway.  In order to 
streamline code maintenance and to enable collaborative code development, a set of 
utilities was added  to allow users and developers to effortlessly share their code with the 
community. These codes are being currently used to synchronise the software versions in 
our group and also for recent distributions. 

The new SIA code maintenance package includes four key utilities: 

1) Program sia-config provides code customization for the current system. It 
allows specification of the compilers and their switches for the various phases of 
building the codes.  

2) Program sia-update is the general code maintenance utility performing 
packing and unpacking of the specified source code components, their building 
and installation. When installed on a web server, the program also executes most 
of the code maintenance server requests 
(http://seisweb.usask.ca/SIA/cs.php). On a client, when called 
with the appropriate switches, the code also tests the resulting binary codes, adds 
users, generates lists of code repositories and performs file cleanup.  

3) Program sia-install is the command-line code installer. It obtains the 
specified components of the package through a web service and installs it by 
using sia-update. For example, command  sia-install 
http://seisweb.usask.ca –distribution CG .all installs the 
“Computers and Geosciences” (CG) subset from our web server.  

4) Utility pdf registers new plug-in tools with the system (Morozov and Smithson, 
1997). This registration includes creating UNIX make files, parameter 
descriptors, GUI menus, and documentation web pages 
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(http://seisweb.usask.ca/SIA//index/).  

A characteristic feature of our model is that the SIA code is configured identically on all 
the code repository servers and processing clients. Code servers are therefore also 
capable of performing full data processing, including remote processing as a web service 
(http://seisweb.usask.ca/SIA/ps.php; Morozov et al., 2006). Conversely, 
if a standard web server is available on a system used, for example, for specialized data 
processing and development of the corresponding tools, it can automatically share these 
tools with others. As a code is updated or added, all clients which connect to this 
repository will immediately (as soon as the version number is advanced) have access to 
it.  Such symmetrical design makes installation and maintenance of multiple copies of the 
package easy and reliable. 

 
Figure 5.1 Configuration of SIA software repositories. Note that only the root entry points are shown 

as the web addresses. For example, the actual code server for the selected line is 
http://chubak.ca/SIA/cs.php. The buttons below allow the user to edit the list. 

 

In the SIA GUI, users responsible for “administrative” tasks are able to add the URL of 
any code repositories (Figure 3.1) they are interested in.  Upon launch of the GUI,, the 
update client builds a list of locally installed SIA packages including their version 
information.  It then obtains a similar list from each of the servers in the repository list 
(Figure 1).  The versions are compared and the user is notified if new packages are 
available or if updates to already installed packages have been made.  If the user chooses 
to update or install a software component (Figure 3.2), the source code is downloaded 
from the appropriate repository and compiled by the sia-update utility on the local 
system.  The downloaded code can consist of multiple files in various languages (C++, 
Fortran, or Java).  This utility takes care of all aspects of the installation including 
generating the make files, documentation, and ensuring that the resulting code is 
optimized for the local architecture. 
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Figure 5.2 Choosing software components to update. Note that the components whose names begin 

with a period are system libraries or configuration directories, and the rest are plug-in 
processing tools (Morozov and Smithson, 1997).  For each component, its current and 
updated version numbers, and the source of the update are displayed. The user can select 
some or all components which will be downloaded, compiled, and installed.   

 

In conclusion, the ongoing development of the SIA code framework shows that the entire 
scope of critical issues facing geophysical data management and processing can be solved 
in a consistent manner. The codes are highly integrated, streamlined for data- or 
computationally-intensive seismic and non-seismic processing and modeling, make broad 
provisions for parallelization and remote (web service) operation, and incorporate some 
of the key community software. With the newly developed web distribution service, the 
codes can also be developed by multiple authors and seamlessly maintained up to date. 
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6 Towards a comprehensive open-source system for 
geophysical data processing and interpretation 

The discussion in this Chapter is based on the papers by Chubak et al (2007a and b), in 
which we emphasized the new aspect of the IGeoS package as a framework for 
geophysical code development. With such key utilities as the GUI, 3D/2D viewer, and 
software maintenance system in place, it was shown that practically any type of 
application (data processing, modeling, inversion, graphics) could be described and 
efficiently implemented in this framework. The paper below outlined this design 
philosophy and presented several examples of its application. 

6.1 Introduction 
Because of its critical importance for modern data acquisition and analysis, geophysical 
software development has grown into a major industry. Many companies, from majors 
such as CGG, Landmark, and Schlumberger to numerous smaller vendors provide 
software solutions and services for numerous applications. Traditionally, geophysical 
software has been highly specialized for certain applications (e.g., field QC, reflection 
seismic processing, modeling, or interpretation).  However, with growing concentration 
of computational power, the present and future trends in geophysical software are clearly 
for re-integration, allowing a researcher instant access to the entire data analysis flow. 
Another important trend is the explosive growth of open-source software developed and 
supported by the community. 

Our package, called SIA (http://seisweb.usask.ca/SIA) has grown from a diversity of data 
analysis tasks encountered in an academic environment, and by design, is not limited to 
any of them. Since its inception in 1995, it was used to process reflection, GPR, and 
crustal-scale wide-angle seismic data, to create 3D, migrated Receiver Function images 
of the Earth’s upper mantle, perform travel-time modeling and inversion, process seismic 
records from nuclear explosions, and recently – to manage a regional seismographic 
network, to process gravity and air-magnetic images, and even to provide web data 
services. Started initially as a multi-component interface for CogniSeis DISCO reflection 
processing package, the approach proved to be quite unique in its broad scope covering 
the full spectrum of geophysical data analysis. 

The open-source model is important for rapid exchange of ideas, development, and 
response to the needs of the community. The success of open-source software in recent 
years has demonstrated that it can meet and from many aspects exceed the quality of 
commercial solutions. With fast development cycles and code contribution directly from 
users, new features can be quickly implemented and vetted.  This has been particularly 
well demonstrated by the community development centred on the GNU/Linux operating 
system. The demand for versatile open-source geophysical systems is high – note that in 
just nine months from November 2006, we received over 190 requests for SIA downloads 
(Figure 4.1 
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Figure 6.1 Known locations of IGeoS downloads (red dots) from November 2006 to July 2007. Note 

that the map was produced using the GMT programs (Smith and Wessel, 1995) integrated in 
the package. 

 

In reflection seismics, many consultants and academics use and write code for Stanford 
Exploration Project (SEP) and particularly Seismic Un*x (SU) systems because of their 
maturity and low cost. These systems are adequate for many single-channel applications; 
however, in more complex tasks, they are strongly limited by linear, UNIX file-stream 
based design and only basic user interfaces. Matlab (with its free equivalent, Octave) is 
another popular solution because of its rich toolbox, readily available graphical tools and 
the ease of developing new processing code. However, Matlab often shows prohibitively 
poor performance in real data processing problems and requires extensive programming 
expertise for operation.  

SIA system stands out among its counterparts in several respects. It is an open-source 
solution that endeavours to ultimately provide a comprehensive processing/interpretation 
solution for the geophysical industry and academia. It provides efficient, dynamically-
linked common address space operation (similar to Disco and Promax, and unlike SEP or 
SU), with significantly richer and customizable data structures and tool interoperability. 
Its code integration and C++ programming flexibility are similar to those of Matlab.  It 
allows several types of code parallelization and includes libraries and tools for managing 
multi-processor processing environments. Further, it has a parallel graphical environment 
with a tightly integrated user interface and customizable 3D data visualization based on 
cross-platform Qt and OpenGL libraries.  Recently, tools for real-time data input and 
seismographic network management were also added to it. It also has a unique capability 
of operating remotely, as a web service, and an automatic software distribution and 
updating service (http://seisweb.usask.ca/SIA/cs.php). These components were described 
in previous publications (Morozov and Smithson, 1997; Morozov, 1998; Chubak and 
Morozov, 2006; Morozov et al., 2006; Morozov et al., in review; Morozov et al., 2007). 
In this paper, we overview the key features that may be of most interest to geophysicists 
and software industry. 
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6.2  (Not only) Seismic processing system 
SIA currently is a nearly complete seismic processing system, with many tools reaching 
to the broader geophysical applications (Chubak and Morozov, 2006). The current system 
scope includes reflection, wide-angle, and to certain degrees earthquake seismology, 2- 
and 3D potential field processing and inversion, PostScript and interactive graphics. 
Nearly 200 dynamically-linked plug-in tools are closely integrated with a content-
agnostic processing monitor and often between each other forming sub-packages, such as 
graphics, AVO, or Artificial Neural Networks. Almost any type of data can be handled 
by the system making it possible to merge multiple data types.  

The system was originally a replacement of Disco reflection seismic processing system, 
and it still supports Disco-style job scripts, with several extensions (see job examples at 
http://seisweb.usask.ca/temp/examples). Tools written for Disco can also be incorporated, 
with virtually no modifications. 

The key components of the system (the GUI, processing flows, visualization and display 
tools) operate asynchronously and communicate through a Parallel Virtual Machine 
(PVM) interface (Figure 1.1). Because of the use of PVM, the many components of SIA 
can be distributed, allowing, for example, to distribute the processing load or for the 
visualization program to operate on one or several dedicated computer systems. 

 

6.3 Processing concept 
The central concept of SIA is the abstract “processing flow” representing a logical 
sequence of data manipulation or modeling steps performed by “tools” connected by 
structured “trace” data buffers (Figure 1.1). The sequence is recursively invoked in 
reverse order, more resembling the mechanism of logical inference than data processing 
(Morozov and Smithson, 1997). Note that the flow contains no mechanism for data 
propagation (this is done entirely by the tools), and thus no assumptions about the data 
types or character of processing is made. As an example, the system can take a random 
walk through a 3D seismic dataset (Morozov, 1998). Flows, as well as data traces and 
many other objects can be transmitted across the PVM connections (Figure 1.1) to 
potentially form a complex, parallel processing environment. 

On top of this abstract processing model, the following features further enhance the 
flexibility of the system: 
“Trace records” (Figure 1.1) can be of variable data formats, sampling intervals, record 
lengths, and time starts. They can contain linear arrays (seismic records) or 2- and 3D 
arrays representing multi-component seismic records, or 2D grids used in potential-field 
processing. However, traces are not required in order for the system to operate.  
Other types of data are broadly used and often introduced by new tools (Figure 1.1): 
velocity models, travel-time curves, database tables, Artificial Neural Networks, 
inversion engines, and various graphical objects.    
User-defined “trace headers” can contain variables of any types (as in Disco or ProMAX, 
and again unlike SU), but also arrays, references to databases, and functions allowing, for 
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example, “on the fly” computation of midpoints and azimuths based on the endpoint 
coordinates. 
“Tool” parameterization is unusually flexible and uses trace headers, database fields, 
symbolic text substitutions, and UNIX command-line parameters interchangeably with 
constants.  Many tools support structured parameterizations allowing, for example, to 
design custom graphical user interfaces (GUIs) or build composite PostScript plots. Tools 
can be represented by binary codes or macro-commands combining other tools, with 
coherent parameterization and optimized for a particular task.  
Some tools may not participate in the flow (Figure 1.1) at all but instead provide services 
to other tools. For example, the AVO tool can compute Zoeppritz reflection coefficients 
or Elastic Impedances for plotting, by using models generated by the tools producing 
waveform synthetics. 
In all geometry manipulations, the system is aware of the Earth’s shape, with several 
ellipsoidal approximations or Cartesian coordinates to choose from. 
All processing flows can operate from the user’s GUI or from parameterized batch scripts 
allowing execution of complex, unattended, self-documented processing sequences.  

6.4 Graphical User Interface 
Constructing processing flows is greatly simplified by a modern GUI which also provides 
the utilities users expect from commercial software, such as project management, process 
monitoring and control, search, and extensive context-sensitive help (Figure 1.3). The 
GUI is based on the cross-platform C++ Qt libraries from Trolltech, so that SIA can be 
ported to a variety of operating systems, such as Linux, Solaris, or even OS X with only 
minimal effort. In a grid or cluster environment, its configuration is also done from 
within the GUI by specifying the nodes on which a particular flow and its components 
(subflows, I/O, display tools) is to be run. This allows multiple processing jobs to be ran 
in parallel on either a Beowulf cluster or distributed over a peer network. 

Tool names in the GUI may be context-dependent and showing summaries of their 
parameters (Figure 1.3). Tools can also communicate the changes in their parameters 
during run time (e.g., from interactive editing by the user), which would be displayed and 
saved on closing the job. 

6.5 OpenGL/Qt 3D/2D display server 
Visualization and interaction with the data is a key to many data analysis tasks. 
Traditionally, geophysical software packages have been differentiated into “processing” 
and “interpretation” systems by the role of interactive visualization in them. Processing 
systems emphasize flow-based design (Figure 1.1), with special emphasis on 
reproducibility of the results and batch (unattended) execution. By contrast, interpretation 
systems are visualization-centred and based on data viewers (such as OpendTect, 
http://www2.opendtect.org/). In such a system, the data organization follows spatial 
patterns, and system operation is mostly driven by data displays and user commands. 
Application of various “plug-in” tools is typically determined interactively by the user, 
and only a limited number of fast operations can be performed in real time. 
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In our visualization approach, we endeavour to erase the above differentiation between 
processing and interpretation workflows and perform them on a common software base 
and user interface. Some examples are shown in Figures 4.2-4.6. By combining tools 
from the graphics package, complex images and user interfaces can be defined by the 
user as parts of SIA data processing flows. These images can then be rendered either in 
publication-quality PostScript (using the interfaced GMT programs; Wessel and Smith, 
1995) or by using an interactive OpenGL-based SIA display server. Because the content 
of the display is entirely determined by the underlying processing, the display server can 
implement any functionality, such as displaying seismic data and performing potential-
field modeling and visualization (Figure 4.2), seismic ray tracing (Figures 2.4 and 4.3), 
and computing waveform synthetics (Figure 4.4) in the same session. Through direct 
access to GMT databases, the server is also able to include 3D coastline base maps in its 
displays (Figure 2.4).  In addition, full seismic and other data processing capability is also 
available to the interpreter through the underlying flow-processing capability. 

 
Figure 6.2 An example of interactive 3D visualization for potential-field interpretation. The model 

shows the Precambrian basement in SE Saskatchewan coloured by air-magnetic anomaly 
(copper colouring). The surface topography is highlighted using the “sea-land” colour 
palette from GMT. Over 40 preset colour palettes are available, and custom palettes (as well 
as colours, line styles, and lighting) can also be defined. 
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Figure 6.3 Wide-angle crustal ray-tracing model from the ACCRETE wide-angle seismic experiment 

(Morozov et al., 2001). 
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Figure 6.4 Display of a reflection-refraction shot seismic record. Variable-area wiggle over variable-

intensity amplitude display is selected. Note the interactive plotting options in the Property 
editor (lower left). GMT “jet” colour palette (re-implemented from Matlab) is used for trace 
background. 
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Figure 6.5 Continuous seismic record display. In this SIA job, we load seismic data from files or 

network interface, subdivide them into segments and display in a scrolling trace sequence. 
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Figure 6.6  3D seismic trace display with a floating object property window. 

 

The visualization system is entirely controlled by the processing flows and is able to 
render a variety of basic data types including: 
Seismic traces with adjustable settings and arbitrarily positioned in 3D (Figures 4.4-4.6). 
Lines and surfaces with variable styles, colours, markers, etc. 
Bitmap-style graphics rendered on any plane oriented in 3D.  
Customizable line styles, colours, colour palettes, axes bars, labels, push-buttons, sliders, 
etc. (Figure 4.5). 
Complex objects (such as velocity and gravity models) are composed of the objects 
above by the corresponding tools. In addition, user-specified coordinate transformations 
are available, so that images can be rendered on arbitrary surfaces. This allows, for 
example, drawing 3D seismic fence diagrams or various displays on the topographic 
relief or on the surface of ellipsoidal Earth. 

The display server operates in parallel on the same or different (optionally, multiple) 
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computer hosts. While interacting with the user, the server also communicates with its 
master processing flow, causing it to take the appropriate actions. For example, Figure 
4.5 shows an implementation of real-time network data input control for a remote Internet 
seismograph (Morozov et al., 2007). The buttons (bottom of Figure 4.5) are used to 
control the data input by the master flow performing the seismic network monitoring. 

6.6 Integration with popular open-source software 
Open-source and open data format design encourages mutual software integration. 
Several popular academic applications proved to be particularly useful in our work, and 
they were integrated with the SIA system using specialized tools: 

The Seismic Un*x (SU) (http://www.cwp.mines.edu/cwpcodes/) is a free and complete 
seismic reflection processing system broadly used at the academia and by consultants in 
the industry.  It was incorporated virtually entirely by means of SIA tools allowing 
running SU processing pipes in (remote) parallel processes and exchanging the seismic 
traces via PVM connections. In addition, several SU codes were “wrapped” into SIA I/O 
interfaces making them fully compliant with the system. In both cases, the SU tools 
gained the advantage of the GUI, extended graphics, a more powerful user interface, 
parallel processing capability, and code maintenance services. 

The classic reflectivity (propagator matrix) approach for modeling elastic wavefields in 
1D, layered models was included in both K. J. Sandmeier’s (Fuchs and Muller, 1971) and 
Kennet’s (1993) implementations. These tools are important parts of the emerging AVO 
package. Both tools have identical model descriptions and output 3-component synthetic 
seismic traces directly into the job flows (Figure 4.4). The first of these programs was 
also parallelized for operating on a Beowulf cluster, and is also capable of plotting the 
models and tracing travel times in them. 

3D, parallel, visco-elastic finite-difference modeling (Bohlen, 2002) was revised for 
encapsulated PVM inter-process communication and integrated with the GUI. Currently, 
work is underway for providing an accurate topographic free-surface condition, 3D 
model visualization, and interactive model building. 

The application plotmtv 
(http://www.phy.ornl.gov/csep/CSEP/CORNELL/TUTORIAL/PLOTMTV/OVERVIEW.
html) is a fast multi-purpose plotting program for visualization of scientific data in an 
X11-window environment, which also produces useful PostScript graphics. We created a 
seamless interface for this application and use it to view database tables and seismic 
traces. We also bundle plotmtv into the standard SIA distribution. 

The Generic Mapping Tools (GMT) is a collection of ~60 UNIX tools for high-quality 
geoscience PostScript graphics, and particularly maps (see example in Figure 4.1). It was 
incorporated as one of the rendering “drivers” in the SIA graphics system. In addition, the 
display server is also able to access GMT georeference databases directly and rendering 
them in full 3D using OpenGL (Figure 2.4). 

Rayinvr (Zelt and Smith, 1992) is a popular travel-time modeling and inversion program 
for wide-angle seismic data. It was incorporated by creating model and travel-time 
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editors, introduction of corrections for crooked-line and ellipsoidal-Earth geometries. 
Work on interactive ray-tracing in true 3D geometry is underway (Figure 2.4).  

6.7 Data processing and modeling web services 
SIA is also apparently the first seismic processing system to operate as a web service 
(Morozov et al., 2006). A standard distribution installed on a system accessible via HTTP 
(e.g., http://seisweb.usask.ca/SIA/ps.php) can receive processing jobs, execute them and 
return the results, currently in the form of web pages or files ready for download (Figure 
4.7). The content of this processing is entirely controlled by the client. The client is even 
able to upload web forms on the server and associate them with processing jobs, thereby 
creating custom web data or processing services. This approach was utilized to generate a 
library of SIA processing examples, some of which are also executable on-line (Figure 
4.7; also see http://seisweb.usask.ca/temp/examples). 

 
Figure 6.7 Sample page (section “Synthetics,” larger window) in the current library of processing 

examples (http://seisweb.usask.ca/temp/examples). Such pages are generated by tool ‘expert’ 
included in the processing flows executed on the server. The contents of on of the sample 
flows are shown in the smaller window in Disco-like format. 

 

6.8 Development framework 
From its inception, SIA was not intended as a complete product to serve a specific narrow 
task, such as reflection seismic processing (Morozov and Smithson, 1997). Instead, the 
design goal was to provide an extensible framework capable of supporting nearly any 
type of geophysical data processing, modeling, or interpretation. However, due to the 
character of its previous applications, most of SIA toolkit development was so far related 
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to seismology. 

The system allows its users to rapidly add new functionality with a minimal effort. Two 
principal features simplify the development within SIA. Firstly, new modules can be 
added to perform custom data processing while taking advantage of other tools and 
extensive C++ class libraries, including Qt and OpenGL graphics. Secondly, tool 
interactions, aided by the GUI, effectively transform Disco-like job scripting into a 
model- and process-description language. Custom interactive graphical applications can 
thus be created by simply designing processing flows and without any “serious” 
computer programming. 

New tools can be coded using a mixture of C, C++, FORTRAN, and even Pascal or Java. 
At the University of Saskatchewan, graduate students routinely write new processing 
modules for class exercises and also to further their research.  In our experience, a 
reasonably complex tool can be completed in only a few days. Templates have been 
created to aid in the development process, and a complete set of compilation and linking 
tools are provided.  New modules are integrated with the system by the maintenance 
utilities so that they become available from the graphical interface and provide fully 
functional context-sensitive help to the user.  

6.9 Automated documentation, code distribution, and 
collaboration tools  

Given its role as a development framework, the central theme of SIA in the recent years 
has actually been code and documentation maintenance. With about 600,000 lines of 
tightly integrated code, special efforts are required for facilitating development, 
maintaining user documentation, and performing system integration and testing. Most of 
these services are wrapped into a single utility sia-update, which can be used to 
compile system libraries, tools, the GUI or display packages, and test them. The utility 
also creates user’s and programmer’s documentation 
(http://seisweb.usask.ca/SIA/index/), posts examples, and creates new user setup. First-
time installation or update from a remote distribution can be performed by a single call to 
sia-install utility, which can be obtained from the SIA installation page at 
http://seisweb.usask.ca/SIA/doc/install.html.  

To aid in decentralized collaborative development, SIA offers an automated code 
distribution system (http://seisweb.usask.ca/SIA/cs.php) modeled after open-source 
projects such as apt-get and yum.  Each installation may configure a list of 
repositories which will be checked for updates to currently installed or new tools. If 
updates are available, the user is notified through the GUI and is provided with their 
descriptions. When an update is selected for installation, the source code is downloaded 
from the server and compiled on the local system. The entire process is automated and 
controlled from within the GUI, or it can be performed from a command line. By 
downloading source codes rather than binaries, the system is able to share tools across 
many supported architectures. Further, the code is compiled optimized for the hardware it 
is running on (i.e. AMD, Intel, or PowerPC) ensuring the best possible performance.  The 
ability to install and update code is restricted to “administrative” users, which may be 
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useful where there is a single installation for a number of users. 

Well-supported open-source code standardization could allow multiple developers to 
collaborate by sharing the codes in a consistent, reliable, and architecture-independent 
manner. SIA accomplishes this by allowing any installation to be used for code 
development and also to function as a code server (if a standard web server, e.g., Apache, 
is available). In such a way, source codes developed locally become immediately 
available for installation on all subscribing systems. Finally, the author of a new tool can 
arrange for automatic “bug reports” related to that tool to be received by the code web 
service above.  

6.10 Conclusion 
SIA appears to be the most full-featured seismic processing system which could be of 
interest to researchers in both academia and industry. Its strengths are in its unique 
processing concept, broad scope, modern interface, robust core, very general 
visualization system, and parallelization capabilities. Since new ideas in seismic 
processing constantly require new software, SIA is optimized to serve as a concurrent 
development framework allowing new processing tools to be rapidly developed while 
leveraging the existing code and graphical utilities to dramatically reduce the time and 
effort required. The display system seamlessly handles both 2D and 3D data while 
offering some unique features and allowing extensive customization by the user without 
the need for programming. A code update and distribution system provides easy and 
automated access to software updates and allows developers to share their work without 
the need for installation or maintenance utilities. 

As a closing remark, note that unlike the FreeUSP, GMT, SEP, Seismic Un*X, SIOSEIS, 
and of course their commercial analogs, practically everything of the above was 
accomplished without any financial support. The development was carried out in support 
for different projects in several areas of geophysics, united with a firm belief that the 
software can and shall be well-designed, integrated, re-used, and shared.  
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7 Rebuilding a Regional Seismographic Network in 
Southern Saskatchewan 

In this and the following Chapters, I touch on a specific application of the software 
development described above. Chapter 7 is based on the paper by Morozov et al. (2007), 
in which we present the need for seismic monitoring in Saskatchewan and the current 
status of rebuilding the network by using new digital instruments. I built the first two 
instruments myself, and proposed an Internet software solution described in Chapter 8 
(based on Chubak and Morozov, 2008). This system is not directly related to IGeoS 
package; however, I designed an Internet data exchange protocol, and my supervisor (I. 
Morozov) wrote several IGeoS tools to use it.  

Currently, two stations are functional near Saskatoon, with seismic data continuously 
transmitted to the lab, processed in real-time by IGeoS flows, and saved on disk and 
regularly backed up. Note that such level of automation appears to be unavailable with 
commercial hardware and software solutions provided, for example, by Nanometrics and 
employed by the Canadian Seismograph Network. However, such automation is critical 
in our environment, in which there are no personnel regularly monitoring the seismic data 
acquisition. 

7.1 Introduction 
Despite its large territory, Saskatchewan shows a striking paucity of seismic monitoring 
stations compared to practically any other area in North America. Saskatchewan is the 
only province in Canada not contributing seismic data to the Canadian National 
Seismograph Network (Figure 5.1). Although mining and petroleum exploration 
companies routinely conduct local micro-earthquake monitoring for hazard mitigation 
and assessment studies, no regional seismic data is systematically collected for research 
purposes. In the 1960’s-70’s, the Department of National Defence operated a station near 
Creighton for atomic blast monitoring. Since 1978, regional stations were operated by the 
University of Saskatchewan at four different sites on the surface and two underground 
(Agrium and Colonsay mines). The Geological Survey of Canada operated the Big 
Muddy station from about 1982 to 1990. Only one of these stations remains functional at 
present. 
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Figure 7.1 Map of the Canadian National Seismograph Network (from Natural resources Canada 

web site, http://earthquakescanada.nrcan.gc.ca). Note the gap in station coverage across 
Saskatchewan. 

 

The paucity of seismic recording in Saskatchewan is explained by several reasons. First, 
together with Manitoba, the province is among the least seismically active in North 
America (Figure 5.1). The largest known earthquake in Saskatchewan was the M = 5 1/2 
event in 1909. Since the start of instrumental recording in western Canada in the mid 
1960’s there have been 13 known natural earthquakes.  Since 1978 there have been more 
than 40 mining induced earthquakes, some causing minor damage. Also, the strength of 
the seismology groups at the University of Saskatchewan has traditionally been in active-
source, exploration, and engineering seismics. Maintaining several continuously 
monitoring seismic stations requires a well-developed infrastructure and constant 
attention by skilled personnel. Both of these requirements are contingent on funding 
which had only been intermittent for earthquake-related projects. 

Earthquakes of magnitudes over about 2.5 are not uncommon in Saskatchewan (Figure 



 

48 

5.2). In recent months, several such earthquakes were recorded by the existing U of S 
station and local networks operated by potash mining companies. To accurately locate 
seismic events, invert for their source parameters, and interpret their nature, one needs 
wider-aperture and lower-frequency seismic recording than the one used for mitigation of 
mining hazards. In addition, analysis of such data needs to utilize the observations from 
other national and international networks. At present, GSC location accuracy in southern 
Saskatchewan is ±20 km, and the analysis of small events is poor. 

 
Figure 7.2 Map of Canadian earthquakes (from Natural Resources Canada web site, 

http://earthquakescanada.nrcan.gc.ca). 
 

Apart from monitoring the local seismicity, a permanent, modern, and robust seismic 
network in Saskatchewan would help filling the gap in seismic data coverage across 
Canada (Figure 5.1). The existing U of S station responds to earthquakes of magnitudes 
~4-5 from the continental margins of Canada and from the Arctic (Figure 5.2), and events 
of over m≈5.5 – 6 are typically well-recorded worldwide. Events as small as m = 2.5 can 
be recorded anywhere in Saskatchewan 

Strong seismic events occurring at large distances (20-50º) can be used not only to 
analyse the deep interior of the Earth but also to provide valuable information about the 
structure of the crust and even the crystalline basement. Modern data analysis techniques 
allow inversion for near-station structures that might be of interest for diamond 
exploration and for petroleum industry. Thus, by using the so-called Receiver Function 
technique, one can combine recordings of different components of ground motion to 
measure the thickness of the crust and of basin sediments. Crustal anisotropy measured 
from teleseismic recordings provides information about tectonic stress. Also, as it has 
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been shown recently, cross-correlation of the seismic “noise” from several stations can be 
used to invert for crustal (in our case, basin) structures. 

Another important aspect of expanding seismic monitoring activities is education and 
outreach. Real-time seismic recording can be naturally combined with live and interactive 
displays showing seismic data, recent earthquakes, and also providing various geology-, 
science-, and resource-related information. Such displays are becoming increasingly 
popular and are getting recognized as invaluable educational tools. We have recently set 
up such a display near the Museum of Natural Sciences at the U of S (Figure 5.3). 

For all aspects of seismic monitoring mentioned above, from real-time monitoring to 
advanced analysis and computer displays, fully digital recording and automated data 
handling is required. The existing U of S station near Bergheim (Figure 5.4) is analogue 
and uses a helicorder (paper drum recorder) to record seismic waves. Although simple 
and robust, this system does not allow reproduction of the records in a form suitable for 
further analysis or remote display. Recent upgrading of this station to a digital Taurus 
seismograph by Nanometrics did not completely resolve this problem, as the system still 
requires extensive and continuous effort for saving and displaying the records. 

Here, we describe our approach to rebuilding the U of S seismographic network, 
converting it into modern digital technology, and integration with live public-interest and 
educational displays. We decided to pursue this goal by building our own low-cost 
instruments and by developing all the necessary software for data acquisition, processing, 
and display. In conclusion, we outline our plans for its further expansion and 
enhancement.  

 
Figure 7.3 Display of earthquake-related information at the Department of Geological Sciences, 

University of Saskatchewan. This live web-based TV display constantly shows the recent 
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global earthquakes, live seismograms from our SKBG station (Figure 5.5), as well as 
presentations about the Earth, tectonics, and seismology. 

 

 

7.2 Low-cost Internet seismograph 
To achieve an affordable and low-maintenance solution for seismic data acquisition, we 
built our own system using components (PAR4CH 4-channel amplifier, 24-bit A/D 
converter, and a GPS clock) manufactured by Symmetric Research (http://symres.com). 
The use of this hardware allowed reducing the cost of the system by ~8 times compared 
to a Taurus while providing similar, industry-standard data quality. The seismograph 
boards were connected to a mini-ITX PC computer. No moving parts (fans or hard disk 
drives) were used in order to reduce vibration that might influence the recordings. The 
equipment was mounted inside the upper half of a steel barrel, with its bottom part 
occupied by three 1-Hz geophones by Geospace (Figure 5.4). For temperature control 
during the cold season, two long-life incandescent light bulbs are used (Figure 5.4).    

 
Figure 7.4 Left: the seismic station during testing. Right: the seismograph assembly, with its lid open. 

Thermal insulation and electrical bulbs are used for temperature control during 
Saskatchewan winters. 

Open-source Linux operating system was installed on the computer, with device drivers 
provided by Symmetric Research. We also wrote all the necessary software for data 
acquisition and transmission to the data collection facility via a standard Internet (wired 
or wireless) connection. The software consists of five main parts: 1) data collection server 
installed on the acquisition computer (Figure 5.4); 2) web server allowing remote control 
of the acquisition software; 3) data relay program installed on a Linux computer in the 
lab, 4) ring buffer for continuous disk data storage, and 5) data analysis and visualization 
software. 

The data acquisition server program constantly monitors the network for an available data 
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recipient (typically, the relay program) and sends the seismic records to it in near-real 
time. In addition to the records of ground movement, GPS timing data (to sub-1 ms 
accuracy) and state-of-health information (such as the temperature inside the system 
compartment) is transmitted. If the network is down, the server stores the records and 
attempts resending them when the connection is re-established. An Apache web server 
installed on the same computer allows viewing and setting parameters of the recorder 
remotely, by using any web browser. Finally, whenever a hazardous system condition 
develops (e.g., temperature dropping out of range), the system sends an email to alert the 
administrator and if needed, performs data backup and prepares for shutdown.   

The data relay program receives a continuous stream of data from the field unit and re-
broadcasts it to one or several clients interested in data analysis or display. The program 
also saves the records continuously to disk in the form of a “ring buffer” allowing 
random or circular access to the data by other programs. A single relay program can serve 
any number of field data servers, and in the future, it will also be able to send the data to 
the national data centres and to other interested parties. State-of-health information is also 
saved in a database immediately as it is received. 

The data analysis software is very flexible, broad in scope, and takes advantage of the 
power of SIA seismic processing systems that we have developed over a number of years 
(e.g., Morozov and Smithson, 1997; Chubak and Morozov, 2006; 
http://seisweb.usask.ca/SIA). The system currently includes about 200 tools for data 
filtering, inversion, and display, and it was used in a number of applications ranging from 
exploration, crustal and earthquake seismology to the analysis of gravity and air-magnetic 
data (Li et al., 2005), 3D data visualization, and even web services (Morozov et al., 
2006). By adding a module for network data input, we obtained a variety of ways for 
displaying or saving the records. The specific choice for data display is made by the user 
by designing the appropriate combination of SIA tools (Figure 4.5). In addition, the 
software is being continuously expanded by the Geophysics graduate students as a part of 
their class and research projects.  

 

7.3 Towards a digital seismic network near Saskatoon 
The existing and proposed sites for the new U of S digital seismograph stations are 
shown in Figure 5.6. SKBG is the station located in the U of S Geophysics test site near 
Bergheim. The station is equipped with a 3-component Nanometrics Taurus seismograph, 
the same as used by the national POLARIS consortium in Canada 
(http://www.polarisnet.ca/). Currently, the station is using three 1-Hz L-4 geophones, 
which we intend to upgrade to a broad-band sensor in the future. The data from Taurus 
are streamed to the U of S via a radio Internet link. An additional vertical-component 
analogue channel still also operates at this station. 

Station SKWC is being installed at the time of this writing (April 2007) at the White Cap 
Dakota First Nation grounds south of Saskatoon. In addition to recording regional and 
global seismicity, the purpose of this station is to provide additional information for 
monitoring ammunition blasting activities at the Canadian Forces depot near Dundurn. 
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Power connection for this station was provided by the Forces, which are also committed 
to partial maintaining of the power and 24-hour wireless Internet service to it. Sites for 
the third station are sought near Colonsay (Figure 5.6); this location would be optimal for 
triangulation required for accurate location of seismic events.  

 
Figure 7.5 Existing and proposed digital seismic stations near Saskatoon.     

For consistent operation of a seismic network by a small University program, a high 
degree of automation is required. Our goal is to achieve continuous and generally 
automatic data acquisition, archiving, event detection, generation of event bulletins, 
extraction of event windows, and displays. To achieve this, we have programmed an 
STA/LTA (Short-Time-Average/Long-Time-Average) event detection algorithm and also 
methods for record extraction and display. The resulting continuous seismic records as 
well as time windows of extracted events can be shown on the public seismic display 
(Figure 4.5).   

With small cost, high degree of automation, expandability and flexibility, the approach 
appears to be ideal for further expansion of the regional seismic network in southern 
Saskatchewan. Additional stations would improve the ability to detect and accurately 
characterize seismic event, and contribute important data for student training and public 
interest and education. With the design described above, only quiet locations with AC 
power and Internet connections are needed, and neither of these requirements is difficult 
to satisfy in Saskatchewan. Currently, we are looking for three types of land owners who 
may, in our opinion, be interested in and benefit from installation of such seismic 
stations: 1) mining (particularly potash) operations; 2) high-speed Internet provider 
networks; and 3) rural high schools. The last of these options is particularly attractive, as 
it would provide the students with a unique opportunity for hands-on research related to 
their land, to participate in an exciting, quantitative natural science, and at the same time 
to make tangible contribution to the global activity for monitoring earthquakes. 
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8 Low-cost continuous seismic acquisition utilizing 
open-source software 

In this Chapter, in I describe the design of the seismograph that I built recently, with 
particular emphasis of the real-time Internet data exchange. The Chapter is based on the 
paper by Chubak and Morozov (2008). The key points of the approach are its low-cost 
(the complete system costs about 6 times less than comparable Taurus seismograph by 
Nanometrics), open-source software, high degree of automation, and seamless data 
streaming in a customizable data processing and analysis. As a sample of such analysis, I 
present my implementation of the so-called STA/LTA event detection algorithm. 

8.1 Introduction 
Continuous monitoring of regional seismicity is important for locating earthquakes and 
the mitigation of earthquake hazards. In Saskatchewan, this is currently only performed 
by our group at the University of Saskatchewan. We aim at a robust, low-maintenance 
and low-cost solution with full automation of data acquisition, archiving, and processing. 
This is achieved through building inexpensive multichannel digital data loggers and 
utilizing open-source software to transmit the continuous records over a TCP/IP network 
connection.  

The system consists of three components: acquisition data server (located near the 
geophones), data relay program (located in the data centre) and client programs used for 
displaying, processing, and saving the data.  Various clients are available, from simple 
display tools to a direct feed into the IGeoS processing package.  This allows practically 
unlimited flexibility of processing applied to the real-time data stream, from immediate 
archiving to creating ring buffers, identifying events, or producing various data displays.  
Web server is used to display system status and set acquisition parameters. Currently, the 
system has two operational stations near Saskatoon, Saskatchewan, with more stations 
planned.   

As a seismic monitoring system operated by a small University group with, our 
hardware/software solution is designed to be a reliable and fully automated hardware and 
software combination for collecting, transmitting, processing and storing seismic data.  
While use of the system has been focused on a serving as a regional (1Hz) seismograph, 
the network design and concept of direct feed into processing should also work well in 
reservoir monitoring.  The modular approach (server, relay and client) and documented 
interface allow new clients to be written to integrate real time data in other applications 
which could be useful even outside of the seismic community.   

Considerable effort was spent to ensure that the system uses a minimum of network 
bandwidth which makes it suitable for slower internet links found in remote locations. To 
keep operating and maintenance costs at a minimum, the data is processed without the 
need for an operator and events are automatically identified.  Most significantly, the data 
can be loaded directly into a full-featured geophysical processing package (IGeoS).  This 
allows a great deal of flexibility in the processing scheme.  The software is open-source 
(Linux-based), and the hardware is build from standard computer components and an 
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inexpensive commercially available 24-bit A/D system with GPS timing. 

 
Figure 8.1 Seismic data network design 

 

Three distinct components comprise the software:  server, relay, and client (Figure 6.1).  
Communication is handled over a standard TCP/IP network connection.  The server 
component is located at site of the data acquisition and transmits the digitized data to the 
relay.  Multiple servers can connect to a single relay which can pass the data unaltered to 
the clients or first perform some timing synchronization.  Clients can connect to the relay 
and retrieve a list of available servers.  They are then able to specify which servers to 
receive the data stream from. 

8.2 Server 
The data acquisition server program is automatically started on boot, makes a network 
socket connection to the relay program and begins to communicate the digitized values, 
time marks and GPS coordinate and time strings as they are retrieved from the hardware.  
Timing data may arrive significantly before or after the samples which they describe, and 
thus it is necessary to synchronize the data before it is used. However, in order to keep 
the server as simple and robust as possible, the synchronization is done off site, by the 
relay or client programs. 

If the network connection is broken, the data can be stored locally for later transmission 
or retrieval via a web browser.  When the network becomes available again, the 
connection with the relay is reestablished automatically, and the transmission continues.  
After a network outage, the stored data may be sent concurrently with new data until the 
system is again working in real time.  Optionally, the server can back up all data to a 
local disk in addition to transmitting it. 

To monitor the state of health (currently temperature) of the system, we use the 1wire 
devices from Dallas Semiconductor.  A model DS9097 serial to 1wire adapter is used and 
a DS18S20 digital 1wire thermometer.  The server software polls the thermometer at a 
configurable interval and transmits a “state of health” package to the relay which includes 
the time and temperature.  If the temperature is outside of the configured high or low 
alarm points an email is also generated and sent to the specified addresses. 
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8.3 Relay 
The data relay program runs continuously at the data center computer and accepts 
network connections from all data servers and from clients in the system (Figure 6.1).  It 
has two main functions: re-distributing data and synchronizing the timing.  It acts as a 
distribution point for the data which reduces the load on the internet connections from the 
servers.  With this design, only a single stream needs to be sent from the remote site 
regardless of how many clients are receiving the data.  Communication is formatted using 
a small set of XML tags.   

Each server makes a connection to the relay, identifies itself as a data source and provides 
site information.  The available site names are then transmitted to any clients that 
connect.  Clients connect to the relay and specify what type of data (e.g., raw or time-
synchronized) they expect.   Synchronization is accomplished by creating a data queue 
for both the time marks and the corresponding data packets in the relay.   

8.4 Clients 
Implementation of a client for this system is relatively simple: the program must only be 
able to make a socket connection over a network to the relay and send and parse a few 
XML tags.  We have written a simple client which displays the real-time data from 
selected channels. Another client program send the real-time data into the IGeoS 
processing package (formerly SIA, Morozov and Smithson, 1997; Chubak and Morozov, 
2006), which allows to perform any standard seismic processing and leverage the more 
than 200 tools currently in the package. Because the data is fed directly into a processing 
package, the result is limited only by the selection of tools made by the user.  For 
example, we use processing flows which save the data to a RAID concurrently with 
performing filtering and preprocessing and applying an STA/LTA (Short Term Average / 
Long Term Average) event detection. IGeoS client processing flows can also use 3D 
OpenGL visualization or PostScript to display the data, and to produce various types of 
file outputs, such as formatted in ASCII, SAC, or SEG-Y.   

 

8.5 STA/LTA Event Detection 
Seismic events are auto detected by a SIA tool utilizing an STA/LTA algorithm.  First, 
“short” and “long” window lengths are defined depending on the wavelength of interest.  
Testing has shown that using a short window of approximately ¼ of the expected  
wavelength and a long window of 100 times larger produces useful results though a great 
deal of precision is not required.  Depending on the noise in the system it may be useful 
to have the short window cover several complete wavelengths.  In this way short noise is 
less likely to trigger an event.  The signal is smoothed to reduce false triggers from noise 
and the average absolute value of the signal is calculated for both the short and long 
windows to produce the short and long term averages.  During an event the Short Term 
Average (STA) increases much faster than the Long Term Average (LTA) so the ratio 
STA/LTA can be used to indicate an event.  When the value of STA/LTA passes a 
defined threshold an event is declared.   
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8.6 Current Installation 
Mining and other human activities account for many of the seismic events in 
Saskatchewan.  These are of interest to the public and in many cases to the exploration 
community as well.  The first system we installed is located on the Whitecap Reserve 
south of Saskatoon, SK in response to concerns that seismic activity from a nearby 
military base might be affecting the structural integrity of the buildings (Figure 5.5; 
Morozov et al., 2007).  A second station is located at the UofS Geophysics test site east 
of Saskatoon.  From this location we have recently recorded a large, mb=3.2, seismic 
event near Esterhazy, SK (Figure 6.2). We are currently looking for a site for the third 
station of the network, which is necessary for accurate event location (Figure 5.5).   

 
Figure 8.2 Esterhazy, SK event on Dec 23, 2007 recorded at station SKBG in Figure 2. 

 
 

 

8.7 Conclusion 
While network monitoring systems are not new, we believe that the use of open-source 
software combined with commodity hardware provides low-cost and robust solution for 
remote seismic acquisition.  The unique (to our knowledge) integration of the data stream 
into a processing package provides features and flexibility not found in other systems.    
Finally, as a complete solution for seismic monitoring it is necessary only to provide the 
appropriate hardware and a location with power and internet to begin collecting and 
analyzing data.  
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9 Discussion and Conclusions 
As a result of the contributions from this Thesis, development of IGeoS package is 
sufficiently complete for it to be useful to geophysicists working on a variety of tasks. 
However, IGeoS’s contribution to the community may not be limited to its current 
functionality as it provides a framework to develop, manage and maintain geophysical 
software.  By developing code within a framework, the need to duplicate existing work is 
avoided and the installation and maintenance of code is simplified.   

The graphical interface significantly reduces the amount of time a new user needs to 
spend to learn the scripting language.  Since help functionality and documentation are 
provided through the interface, it is possible to build and modify flows without the need 
for extensive training.    

3D visualization is provided through an abstracted OpenGL implementation which allows 
IGeoS to serve not only as a processing system but as an interpretation and display 
application.  Semi-custom applications can be created by using the processing flow to 
link widgets such as buttons or sliders to the inputs of other tools.  This allows 
researchers to rapidly produce an application which will perform tasks not found in other 
packages without the need for any programming.   

To effectively acquire and transfer seismic data from remote locations, a collection of 
network tools were written.  Their modular nature allows the tools to function 
independently or within the IGeoS framework.  When used with IGeoS, the data stream is 
incorporated directly into the seismic processing flow so that standard processing steps 
can be applied to the data.  Multiple streams can be analyzed within a single processing 
flow to locate events.   

Finally, as most extensive development efforts, this project paved way for much more 
potential further developments. Although IGeoS appears to be conceptually complete 
with all major components and functionally designed, significant work is still required to 
maintain and enhance many of the features within the code.  Additional tools for PVM, 
multi-processor, and multi-core parallelization need to be developed. Many of the 
existing tools could benefit from the new interactive and graphical functionalities, and 
many new data analysis approaches may emerge as a result of the enhanced capabilities 
of the package. As an example, the development of a new 3D refraction statics package 
(Jhajhria, 2009) has been largely facilitated by the ability to analyse the first-arrival 
travel-time surfaces interactively in 3D. In the real-time data acquisition project and 
exciting development would be to implement continuous data delivery to the Canadian 
Seismograph Network, expanding the system, and making automated location and 
parameter estimation of earthquakes. 
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9 Appendices  

 

9.1 Appendix A. Job example: 2D ray tracing model and GMT 
base map in 3D (Figure 2.4) 

As an example, we present fragments of the SIA job used to produce the 3D display 
shown in Figure 2.4  We use the traditional DISCO-style job format, in which parameters 
are identified by the positions of the corresponding tab-delimited input fields. Tool 
descriptions start at tokens ‘*call’. Note that tool parameterizations can be extensive and 
are structured by providing multiple “parameter lists” identified by the corresponding 
keywords. Some of these lists are indicated by commentaries in the example. Lists 
themselves may also span multiple lines and contain complex parameterization of the 
display. 
 
############################################################# 
#        ACCREETE model in 3D 
############################################################# 
###### Job set-up. In particular, use kilometers for distance units 
################################################################### 
*setup 
noapp 
units km km 
 
###### load the profile track line and midpoints from ASCII files 
################################################################# 
*call readtab table   x-profile 
x real 1 
lat float 
lon float 
file    all     pc-coords.txt 
*call readtab table   midpoints 
lon float 
lat float 1 
z float 
file    all     ../MAP/midpoints-rev.table 
 z 0. # draw midpoints at z=0.0 
 
### load the interpolated Moho depth grid 
##################################################### 
*call readtab map moho 
lon float 1 
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lat float 2 
z float 
argrang lon -131.3 0.01 111 
argrang lat 54.6 0.01 61 
file all moho_depth.xyz 
 
###### create graphic elements 
##################################################### 
 
*call graphic 
backgr black 
foregr black 
 
# line and fill styles: 
line solid 1 gray  line-shore 
line solid 1 white  line-borders 
line solid 1 blue  line-rivers 
line dash 1 melon  line-grid 
fill none blue  fill-wet 
fill none blue  fill-lakes 
 
# palette for Moho depth: 
 
backgr -same- 
foregr -same-  # foreground of the same color as top of 
the palette 
 
#palette pal-moho gmtrainbow  25.0 31.0 
#palette pal-moho gmtjet   25.0 31.0 
palette pal-moho buor   25.0 31.0 
 
# buttons for interactive operation: 
button button_trace Trace rays 
pc-section exec trace 
button button_save Save model 
pc-section exec save 
button button_summary Print summary 
pc-section exec print.summary 
button button_display Display data 
pc-section print This option only prints in this demo! 
 
###### Define 3D projectors 
##################################################### 
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### this will project 2D images onto profile cross-section: 
*call view3d fence3D 
fence x lon lat x-profile 
geom sphere    km 
 
### this will project 2D images onto the surface: 
*call view3d surface3D 
geom sphere    km 
 
##### Create surface image 
#################################################### 
*call image surface-maps 
range-x -131 -130  # longitudes 
range-y 55 56  # latitudes 
 
# map of the Moho 
line none 
surface lon lat z   moho 
pal-moho  z  # fill colors based on z (depth) 
 
# scatter plot of midpoints: 
line points 3 red  line-midpoints 
3dtabs lon lat z 
midpoints 
 
###### Create 2D Accrete Portland Canal section 
#################################################### 
*incl pc-image.inc 
 
###### Assemble the 3D image 
#################################################### 
*call image acc-3Dimage 
rangec3 400   # 200-km viewing box 
 
# list selectable views, the first is the default: 
view From above  -131.5 55 0. -20 10. 1.0 
view Globe   0 0 
 
# place 2-D cross-section in "fence" projection: 
object pc-section   fence3D 
 
# place 2-D sirface maps in "surface" projection: 
object surface-maps   surface3D   
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# draw in a GMT basemap at "high" resolution: 
coast -134 -129 52 58 high 
surf land   fill-dry 
surf sea   fill-wet 
surf lakes   fill-lakes 
bndry shore   line-shore 
bndry natnl   line-borders 
bndry state   line-borders 
bndry marine   line-borders 
rivers r   line-rivers 
grid line   line-grid 1.0 1.0 
 
# Moho depth color bar: 
 
cscale vert 0.1 0.8 0.05 0.2 Moho depth (km) 
pal-moho 
 
# image lighting: 
 
light 0 0 1000 0.9 Illumination 
diff  white 
amb  white 
spec  cyan 
 
# buttons for interactive operation: 
 
object button_trace 
object button_save 
object button_summary 
object button_display 
 
# animation (autoplay): 
 
a-rot 0.1 60 30 1.0 
 
##### start the display server 
#################################################### 
 
*call gui 
acc-3Dimage 
 
# request docking windows: 
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dockers 
otree  canvas  # object tree 
otree  graph  # graphics DB tree 
prop    # property editor 

 

Note that the job above uses an included file pc-image.inc containing a description 
of the 2D velocity cross-section along the Portland Canal line. This 2D image is projected 
onto a “fence diagram’ along the line of cross-section and combined with the 2D 
distribution of a source-receiver midpoints and a coastline plot from GMT. Various 
editable items, such as coordinates, palettes, colours, and selections of displayed items do 
not need to be described in the job and are available automatically from the 
corresponding image objects. Finally, animation (rotation) about a tilted axis in 3D is also 
illustrated.  

 

Script pc-image.inc used in this example, and which can also be utilized for a 
purely 2D cross-section display, is shown below. 

 
### graphics elements 
 
*call graphic 
backgr black 
foregr black 
 
palette draw-vp1 
-0.3 red  0 blue 
0 white  0.3 red 
 
# palettes for velocities 
 
palette draw-vp  gmtseis   5.5 8.4 
palhue draw-vs  color cont 2 5. 4 0.05 .95 
 
line solid 1 green  layers 
line solid 1 blue  cells-vert 
line solid 1 yellow  cells-diag 
line solid 1 red  rays 
 
fill solid green  velocity 
 
### RAYINVR 2D ray-tracing tool, loading model from file accrete.v.in1 
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*call rayinvr edit ps Accrete 
vin vp   accrete.v.in1 
summary 
 
### Form the 2D velocity/interface cross-section image 
 
*call image pc-section  ##### plot the model and rays 
range-x -150 200 
range-y -50 100 
#flip-y 
 
axis-x 100  500 annot  border-pen 
X (km) 
 
axis-y 10  100 annot  border-pen 
Depth (km) 
 
velmod Accrete    
layers      layers 
cells   vert   cells-vert 
cells   diag   cells-diag 
vs      draw-vs 
vp      draw-vp 
 
cscale vert 0.8 0.8 0.05 0.2 Vs # colour bar 
draw-vs 
 
cscale vert 0.6 0.8 0.05 0.2 Vp # colour bar 
draw-vp 
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9.2 Appendix B. Interactive multi-threaded seismic processing 
(Figure 4.6) 

 

The following example illustrates seismic trace processing including a simple user 
interaction. When a button is pressed, one record is loaded and displayed in three 
different forms: as a time series, spectrogram, and amplitude spectrum (Figure 2.6 that 
the three transformations are implemented using combinations of various filtering SIA 
tools, and thus they can be easily customized by the user. Also note that the same tool 
“plotrt” is used to generate all three displays.  

 
####################################################################### 
### Simple trace plot example used in real-time viewer development. 
### Seismic traces are read in from a file, their headers listed, 
### synthetic noise added, 
### and the wiggles, spectrogram, and spectra displayed in 2D 
####################################################################### 
 
###### begin with optional text definitions 
 
*define 
model majin2o # model name 
noise 0 
compn 1  # component number to plot 
outfile refl-{model}-0.0001-1.01.sia 
 
###### the following is printed on the screen when the job is started 
 
*info 
 Real-time plotting demo for {model} 
 
###### graphics settings and custom elements 
 
*call graphic 
 
# buttons talking to tool “dskrd” below 
 
button button1  Next trace   
dskrd.1  exec next 1 
 
button button2  Restart input 
dskrd.1  reset  
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# custom colors, lines, fills 
 
color 0.2 0.4 0.6 trace-color  # custom color 
line solid 1 yellow  wiggle-line  
line solid 1 red  spectrum-line 
fill solid red  trace-pos-fill 
fill solid blue  trace-neg-fill 
 
# palette ("hot," ported from GMT) 
 
backgr -same- 
foregr -same- 
 
palette pal-ampl gmthot   -1 1  
 
###### load the records, askthe input to "hold" (wait for button 
pressed) 
 
*call dskrd outfile 
hold 
 
###### pre-process the records (cut at 1000 msec, count, time-shift,  
###### extract one component, apply AGC etc.) 
 
*call modify  1000  
 
*call count chan 
 
# Note the evaluation of trace header expressions: 
 
*call hdrmath 
eval real shift=1000*(chan-1) 
 
*call static shift apply 
 
*call convert 
extract 1 
 
seqind comp integer 1 1 
 
*call agc 300 
 
*call noisegn gauss noise  8 20 80 120 
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### Create a data entry point named 'traces_ready'  
### for spectral analysis and other steps 
 
*call tee traces_ready 
 
### recut the traces into 100-ms segments to fit into multichannel 
display 
 
*call cuttrc 1000 
 
*call table * 
chan x shift timstrt _tsint_ _tnsam_ lasttr 
 
### form the trace display sequences 
 
*call plotrt traces   right 
channel  5 1000 0.05 0.9 0.75 -0.08 peak 0.5 
 
axis-t bl 100 500 %1.0f  1 
 
*end keep  # remove traces, keep header formatting 
 
################################################################## 
##### Begin spectral analysis  
################################################################## 
 
### Start by reading from 'traces_ready' point 
 
*call tap copy traces_ready 
 
### replace the traces with their log(Amplitude Spectra) 
 
*call trcmath 
spectr  
lg 
 
### measure the peak amplitude and shift the amplitudes down by it 
 
*call trcmath 
ampl    90 100 mean ampl 
 
*call trcmath 
subtr    ampl 
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### Form spectra display 
 
*call plotrt spectra   right 
combine replace 
channel  1 100.0 0.05 0.07 0.7 0.15 peak 0.8 
axis-t bl 10 20 %1.0f  1 
 
*end keep # remove spectral traces 
 
################################################################## 
##### Begin spectrograms analysis  
################################################################## 
 
### Read again from 'traces_ready' point 
 
*call tap copy traces_ready 
 
### Form Rihaczek's instantaneous spectrum 
 
*call spctrgr rih  50 
frange 10 2 100 
 
### Form spectrogram display. 
### Note that the spectragram traces are multi-component 
 
*call plotrt spcgram   right 
channel  1 1000 0.05 0.3 0.75 0.2 peak 1.0 
#axis-t bl 100 500 %1.0f  1 
 
*end # remove spectral traces 
 
################################################################# 
### Build the final display 
################################################################# 
 
*call image trace-image 
rangen2 1 
 
traces traces.0 
display   wg 
wiggle   line   wiggle-line 
wiggle   fill-pos  trace-pos-fill 
wiggle   fill-neg  trace-neg-fill 
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traces spectra.0 
display   wgva 
wiggle   line   spectrum-line 
wiggle   fill-pos  trace-pos-fill 
#wiggle   fill-neg  trace-neg-fill 
 
traces spcgram.0 
#display   wg 
display   vi 
wiggle   line   wiggle-line 
wiggle   fill-pos  trace-pos-fill 
wiggle   fill-neg  trace-neg-fill 
wiggle   fill-pal  pal-ampl 
 
object button1 
object button2 
 
### Start the viewer (or connect to a running viewer) 
 
*call gui gui-traces 
trace-image 
 
layout horiz 
 
dockers # request docking windows 
otree 
prop 

 


