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ABSTRACT

Classical continuum mechanics with dissipation allows the description of observed

creep and phase-lag attenuation effects in solids. The frequency-dependent Q or time-

dependent moduli, compliances, or creep functions which are often used to describe

such observations may be empirical characteristics reflecting not only the properties of

the materials but also the dimensions and shapes of the samples.

The theoretical paradigm employed in this study is strongly different from the con-

ventional, Q-based (often called “viscoelastic”) model. Instead of a single, but arbi-

trarily frequency-dependent Q attributed to a solid, a number of specific physical pa-

rameters of energy-dissipation mechanisms (such as viscosity or thermoelasticity) are

considered. The model is based on first physical principles and focuses on inverting for

the intrinsic (time- and frequency-independent) properties of the material.

The observed frequency-dependent Q’s or time-dependent creep (“memory”) func-

tions are generally explained by the non-linearity of solid viscosity, which can be de-

scribed by selecting the Lagrangian dissipation function. This fundamental conclusion

was suggested as long ago as by Knopoff (1964) but appeared to be little developed

since. I only consider a specific, power-law form of this function, and show that it is

consistent with the strain-rate dependence of effective viscosity used in geodynamics.

Power-law nonlinearity of solid viscosity combined with thermoelastic effects allows

quantitatively predicting all key observations, such as creep, stress-strain phase lags in

torsional and longitudinal oscillations, and broadening of spectral amplitude peaks near

resonance. Analytical and numerical modeling of longitudinal-oscillation phase-lag

measurements in Plexiglas cylinders suggest the value of rheological exponent ∼ 0.56.

This is interpreted as a “near-dry” internal friction in solids. The physical models of in-
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ternal friction also suggest methods for inverting for the in situ dissipation properties of

materials. Finally, the new models suggest several ways for enhancing the theoretical

knowledge about the physical properties of Earth materials.
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Chapter 1

Introduction

Measurement of seismic-wave attenuation is one of the most important geophysical

techniques for characterization of the composition and physical state of the rock. Gran-

ularity, fluids, fractures, temperature variations, and a number of other internal factors

cause anelastic behaviour of Earth materials (e.g. Nowick and Berry, 1972; Mavko

and Nur, 1975; Lakes, 2009). However, the relation of the observed wave attenuation

to the in situ anelasticity is not simple and straightforward. Careful understanding of

the mechanism of rock anelasticity and analysis of the experimental environments are

required for elucidating this relation in each specific case.

Solid anelasticity is present at a broad range of scale lengths and oscillation peri-

ods, such as free oscillations of the Earth, tides, seismic-wave attenuation and lab mea-

surements with rock samples several centimetres in length. Current explanations of

anelasticity include empirical models, microstructural interpretations, chemical-kinetic

models, and also formal mathematical theories using complex-valued parameters of

the media in the frequency domain and material memory in time. The internal friction

within materials is characterized by the inverse “quality factor”, denoted Q−1, and often

also called the “specific dissipation function” (Anderson and Archambeau, 1964) and

attributed to the material. This property is typically determined empirically and often

is frequency-dependent.

1



Physical models of anelasticity are also well developed in theoretical physics but

rarely used in materials science and seismology. In this description, there is no Q, and

mechanical-energy dissipation is described by using the laws of mechanics and ther-

modynamics. The general goal of the present research is thus to try reconciling these

two pictures and providing a physical, rigorous, and quantitative picture of seismic at-

tenuation. This study should also clarify the physical meaning of Q measured in typical

lab experiments and determine its properties.

The specific goal of this research is to accurately describe the physical processes

required to explain observed phase-lag and creep results in experimental seismic atten-

uation experiments. The basic idea is to analytically and numerically simulate several

typical attenuation measurements in the lab.

1.1 Subject of this Research

The types of experiments considered here often include one or two cylinders placed in

series, one being an anelastic rock sample and the other being a known elastic standard.

A sinusoidal force is applied to the standard and through it, to the rock sample. Two

types of observations can be conducted with such an arrangement (Nowick and Berry,

1972; Bourbié et al., 1987). First, the central frequency and the width of the resonant

peak provide information about the elastic modulus and internal friction within the

specimen. Such measurements are usually conducted with a single cylinder or bar and

conducted at relatively high frequencies (Figure 1.1b).

The second key type of observation of seismic attenuation is the phase-lag mea-

surements, which currently provide the most important information at low frequencies

and conditions similar to those encountered by seismic waves traveling within the deep

crust and mantle (Jackson and Paterson, 1993). In this case, the objective is to measure

the phase lag of the deformation (strain) relative to the applied force.

Due to the anelasticity of the rock sample, its response will lag the elastic standard.

Since the standard is elastic, it will be in phase with the applied force and the net result
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Figure 1.1: Basic experimental setup for a) phase lag experiments and b)
resonance or creep experiments.

is a measurement of the phase lag between the driving force and rock sample. This

phase lag will give us insight into the nature of the anelasticity of the rock sample.

The tangent of this phase lag (tanφ) is often used as a primary characteristic of wave

attenuation within materials (Lakes, 2009). It is generally believed to equal the above

Q−1 and to serve as its extension to low (sub-resonant) frequencies. The same quantity

is the primary measure of tidal energy dissipation in planetary dynamics.

1.2 Existing Models of Mechanical Dissipation in Materials

Properties of mechanical behaviour under stress have been routinely tested in numer-

ous materials. Lakes (2009) gives probably the largest collection of results for various

types of materials, including such unusual ones as brain tissue. There exists a broad

variety of methods of such testing, ranging from measuring amplitudes of waves gen-

erated by earthquakes to static and vibrational experiments in the lab. Some of the

key observations of these kinds will be described in section 1.4. However, despite this

broad variability, the behaviour of materials under stress follows a common pattern,

which is best observed in a constant-stress loading/relaxation experiment in the lab. In

an idealized loading/relaxation experiment, a specimen is subjected to a sharp increase

of stress, which is maintained constant afterwards and instantly removed after a long

time. Below, I refer to this stress schedule as the “boxcar” function (Figure 1.2). If we
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Figure 1.2: Boxcar stress function. Typical stress value are around 10-100
MPa and time scales are minutes to hours.

limit ourselves to the behavior known as “anelastic” (with more discussion of this term

given in section 1.2.1), there are three key observations that all types of models must

reproduce in such an experiment:

1. Instantaneous (elastic) (sometimes called “static”) response appearing and disap-

pearing practically synchronously with stress;

2. Gradual, progressively decelerated movement (“creep”) towards the equilibrium

levels, both after loading and unloading;

3. Complete recovery of the initial state (no residual deformation).

There exist several types of models explaining the above observations. These mod-

els can be differentiated by the degree of the use of mechanical theory compared to

empirical laws derived directly from such observations. In the following, I will differ-

entiate between empirical, mechanical-analogue, and physical (theoretical) models.

1.2.1 Mechanical models

Mechanical-analog models attempt to explain observed creep phenomena using prop-

erties attributed to the material. Such models can be understood as “empirical” in the

sense of their trying to reproduce the observed behaviours rather than discovering the

4



Figure 1.3: Basic mechanical elements constituting analog models used to
represent viscoelastic materials.

true mechanisms of physical interactions within materials. At the same time, these

models contain physically-meaningful properties, such as elasticities and viscosities of

the materials. Thus, mechanical models are valuable as providing both simple and in-

tuitive explanations for the observations and also connections to the rigorous physical

models discussed below.

Several types of mechanical models are built from two fundamental elements: the

spring and the dashpot (Figure 1.3). The spring represents elastic properties, while

the dashpot represents dissipative properties. Work performed on the spring is entirely

recovered, as the energy is stored within the spring whereas work performed on the

dashpot is entirely dissipated. The stress on the spring, σspring is assumed to be Hookean

and depend linearly on strain. The stress on the dashpot, σdashpot is assumed to be

Newtonian and depend linearly on strain rate:

σspring = Mε, σdashpot = ηε̇, (1.1)

where ε is the strain, M and η are elastic modulus and viscosity, respectively and an

overhead dot denotes the time derivative. The goal is to build a model based on these

two elements correctly reflecting observations of creep in solids.

The simplest two-parameter models place the spring and dashpot in parallel or in

series. A model containing a spring and dashpot in parallel is called the Kelvin-Voigt

model (Figure 1.4a). In this model, the deformations of both the spring and dashpot

are equal and the forces of their responses are combined. The dashpot will strongly

resist the initial applied force, as the strain rate will become high as soon as the stress

is applied. This causes a non-instantaneous deformation. As the spring approaches
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Figure 1.4: a) Kelvin-Voigt model with a spring and dashpot in parallel.
Stress (σ) and strain (ε) are indicated. b) Strain response to boxcar stress for
Kelvin-Voigt model.

its equilibrium point (ε = M/σ0), the strain rate will decrease, lessening the effect of

the dashpot until eventually the stress is carried entirely by the spring. The lack of

instantaneous elastic response is clear from Figure 1.4b. However, the process does

display recoverability and creep - two of the observations required for an anelastic

material.

The Maxwell model is the other simplest two-parameter model (Figure 1.5a). This

time, the spring and dashpot are placed in series. In the Maxwell model, the deforma-

tions of the spring and dashpot are added together, whereas the force is common to the

two elements. Importantly, such combinations of strain and stress become possible due

to the presence of an internal degree of freedom in this system (Figure 1.5a). Under a

constant external force, the spring will develop a finite extension resulting in “instanta-

neous” elastic deformation, and the dashpot will move at a constant rate, until the force

is removed. Upon removal of the force, there will once again be an instantaneous re-

sponse from the spring, but the absence of external force will mean the dashpot will not

be engaged and will not exhibit recovery. The end result is plastic deformation (Figure

1.5b).

Figure 1.5b shows that the Maxwell model only satisfies one of the observations of

anelastic behaviour - instantaneous elastic response. It is neither recoverable nor does

it creep towards an equilibrium value. The creep exhibited from the Maxwell model is
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Figure 1.5: a) Maxwell model with a spring and dashpot in series. Stress
(σ) and strain (ε) are indicated, the black dot shows the internal degree of
freedom (ε1). b) Strain response to boxcar stress for Maxwell model.

plastic flow and is the source of the non-recoverability seen when the stress is turned

off.

Neither the Kelvin-Voigt nor Maxwell models explain all three of the observed fea-

tures of anelasticity of materials. For that reason, higher-level models, containing three

or more mechanical elements were devised in an effort to satisfy all the observations

of anelasticity. One such model is the Standard Anelastic Solid (SAS) (Nowick and

Berry, 1972), also often referred to as the Zener model or the Standard Linear Solid.

The SAS consists of a Kelvin-Voigt unit in series with a spring (Figure 1.6a).

Similarly to the Maxwell’s body (Figure 1.5a), the SAS model has an internal vari-

able corresponding to the extension of spring A (variable ε1 in Figure 1.6a). This

variable is responsible for the instantaneous elastic response. Upon application of con-

stant stress, spring A will yield instantaneously while the Kelvin-Voigt unit remains

undeformed, as the dashpot prevents quick motion. Over time, the system will creep

due to the dashpot allowing motion at a finite rate. Eventually, the system will reach

an equilibrium strain at which the stress is carried entirely by springs A and B. This

model will similarly display an instantaneous elastic deformation and creep upon re-

moval of the stress. The result of applying a “boxcar” stress to the SAS model is shown

in Figure 1.6b.

Another widely used model is the Burgers model (Figure 1.7a). This model satis-
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Figure 1.6: a) Standard Anelastic Solid model with Kelvin-Voigt unit in
series with a spring. Stress (σ) and strain (ε) are indicated, the black dot
shows the internal degree of freedom (ε1). b) Strain response to boxcar
stress for SAS model.

fies all three criteria for anelasticity as well as explains plastic deformations, and it is

generally considered a realistic model for most rocks (Karato, 2008; Lakes, 2009). The

Burgers model attempts to not only explain the behaviour of an anelastic material, but

also the plastic deformation. The Burgers model is a four-parameter model consisting

of a Kelvin-Voigt unit connected in series with a Maxwell unit (Figure 1.7a). It can

also be viewed as an SAS with a second dashpot. Again, note that the Burgers model

contains two internal variables (denoted ε2 and ε3 in Figure 1.7a). The first of these

variables accounts for the quick elastic response, and the second - for steady-state plas-

tic creep. The Burgers model combines both the properties of the Kelvin-Voigt model

(creep and creep relaxation) and Maxwell model (instantaneous and plastic deforma-

tion) to describe all observed processes, both anelastic and plastic.

The strain response for the Burgers model is a combination of Kelvin-Voigt and

Maxwell responses. It essentially represents Figure 1.4b and Figure 1.5b combined.

This model exhibits instantaneous deformation, creep, plastic deformation and creep

relaxation. In this thesis, I only focus on strictly anelastic behaviour of materials, and

thus the additional plastic deformation is not of interest. For this reason, the Burgers

model will no longer be considered, and we will perform all subsequent comparisons to

the SAS model. The SAS and Maxwell models are also commonly used for implement-
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Figure 1.7: a) Burgers model consisting of a Kelvin-Voigt unit and Maxwell
unit in series. Stress (σ) and strain (ε) are indicated, black dots show the
internal degrees of freedom (ε1 and ε2). b) Strain response to boxcar stress
for Burgers model.

Table 1.1: Summary of mechanical models and their features.

Model

Observation Kelvin-
Voigt Maxwell SAS Burgers

Recoverable

Instantaneous
deformation

No Yes Yes Yes

Creep Yes No Yes Yes
Non-

recoverable
Plastic

deformation
No Yes No Yes

ing anelasticity in the algorithms for computing seismic wave synthetics (Carcione,

2007; Petersson and Sjögreen, 2010).

Table 1.1 summarises the properties of the four mechanical models above. As will

be shown below, all of these models can be expressed by using Lagrangian mechanics.

Among these models, only the Kelvin-Voigt model uses no “hidden” internal variables,

and as shown in section 2.1, this model arises as a natural, first-order approximation

to the macroscopic mechanics of anelastic solid. The drawback of this model is the

lack of instantaneous response to stress (Table 1.1). However, as also shown in section

3.2.3, lifting the assumption of linearity on the dashpot to include non-linearity will

add an (approximately) instantaneous deformation to the list of features above. Thus,

one of the principal observations of this thesis will be that with a non-linear “dashpot”,
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Figure 1.8: Schematic anelastic creep response for stressed material.

the Kelvin-Voigt model becomes consistent with the actual observations of anelastic

solids and may represent a simple and relatively accurate physical picture of elasticity

and anelasticity in solids.

1.2.2 Empirical models

Several types of purely empirical models are broadly used to explain observed creep

curves. Specifically, such models attempt to reproduce the general character of the

anelastic creep, including an elastic response followed by an increase of deformation

with time. The rate of this increase is also roughly proportional to the distance from

equilibrium but decreases with time.

This general character of the observed anelastic creep has been approximated by

using exponential, power and logarithmic functions. Generally, the goal of selecting

the optimal empirical law consists in finding an acceptable data fit by using the smallest

parameterization.

One of the currently most broadly used empirical model for anelastic creep is the

Andrade law (Andrade, 1910). The Andrade law proposes that transient creep can be

reproduced by a power-law dependence on time:

ε(t) = εel +Atn, (1.2)
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where the power n is determined empirically and typically is around 1/3. One problem

with this model is that strain is divergent at t→ ∞, and no equilibrium level is reached.

However, this problem does not appear to be significant for empirical models, because

they are formulated specifically to explain experimental observations, which are limited

in time.

Another empirical model characterizes the anelastic creep by using a logarithmic

function of time (Phillips, 1905):

ε(t) = εel +b log t. (1.3)

This function is only valid for larger values of t, because log t is divergent for t → 0.

This function also diverges for large t but at a much slower rate than any power-law

function in equation (1.2). An alternate formulation of Phillips law (1.3) avoiding the

divergent nature of the log function for small values of t was proposed by Lomnitz

(1957):

ε(t) = εel +b log(1+at). (1.4)

The additional term in the log function shifts the curve to the left, allowing the log

function to be well-behaved near t = 0 as long as at� 1.

Another natural option for empirically describing anelastic creep is the exponential

function:

ε(t) = A(1− e−t/τ). (1.5)

The exponential model in (1.5) is characterized by a relaxation time, τ, over which the

system approaches the state of equilibrium. The advantage of this function is that it

is finite for both small and large values of t. Also, the exponential model is precisely

the transient part of the of the linear Kelvin-Voigt, SAS, or Burgers models described

in section 1.2.1. Thus, the exponential function in equation (1.5) implies some sort

of mechanism behind it (Figure 1.4, Figure 1.6 and Figure 1.7), whereas the Andrade,

Phillips’, and Lomnitz’s laws (formulas (1.2), (1.3) and (1.4)) represent purely empiri-
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cal curves constructed by data fitting.

In many cases, neither of the laws (formulas (1.2), (1.3) and (1.4)) are accurate

enough to describe the observed time evolutions of strain, and combinations of such

empirical laws are used. For example, Gribb and Cooper (1998) discuss fitting their

data for polycrystalline olivine specimens by using either combinations of Burgers

bodies or Andrade curves. Such superpositions of elementary responses are another

empirical approach to constructing realistic stress-strain relations.

The superposition approach is mostly used with exponential laws (1.5), typically by

using Burgers or SAS bodies (Liu et al., 1976). Paired with the linearity of stress with

respect to strain rate, the principle of superposition (called the Boltzmann’s principle;

Nowick and Berry, 1972) states that:

ε(t) = A
∫

∞

0
(1− e−t/τ)D(τ)dτ, (1.6)

where A is the total strength of the stress-strain response, and D(τ) is the function

characterizing the relative “strengths” of the “relaxation mechanisms” with relaxation

times τ. With arbitrary D(τ), this formula gives a very powerful empirical data-fitting

tool. Essentially any observed transient creep curve of the general shape shown in

Figure 1.8 can be fit with an appropriate distribution of relaxation times.

The superposition expression (1.6) is attributed great significance in seismology.

One of the most important and spectacular theories of the anelasticity of the Earth’s

mantle called the Absorption Band Model (Anderson et al., 1977), describes the man-

tle as containing an infinite spectrum of SAS-type relaxation mechanisms (Liu et al.,

1976). This model reproduces the observed seismic Q, which is weakly variable with

frequency. In Earth materials science, combinations of such mechanisms are also used

to explain the “high-temperature background”, which consists of Q values increasing

with frequency (Cooper, 2002).

The Andrade and logarithmic empirical formulas in (1.2) and (1.3) can be repro-

duced by using (1.6) with suitable distributions of relaxation times. Similarly, multi-
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ple Andrade laws (within a finite interval of times, t) can also be used to reproduce

the logarithmic or exponential time dependences. Once a distribution of “relaxation

mechanisms” is considered, the choices of empirical laws become non-unique. This is

because the above criterion of minimal parameterization becomes relaxed. However, if

the minimal number of parameters as important, the differences between the functional

forms of laws (1.2), (1.3), (1.4) and (1.6) become significant. Gribb and Cooper (1998)

argued for an advantage of the Andrade model in certain cases, in which it allowed

fitting a single power-law function instead of two or three exponential functions (1.6).

However, in many other cases, Burgers models are successfully used (Green et al.,

1990; Chopra, 1997).

1.2.3 Classical continuum mechanics

In contrast to the mechanical analogs and empirical models above, in this thesis, I try

approaching the description of anelasticity from the opposite direction, namely from

considering the internal mechanisms of elasticity and internal friction. The general me-

chanical approach to mechanics of media with dissipation was formulated by Landau

and Lifshitz (1976a), as part of their classical 10-volume Course of Theoretical Physics.

Below, I follow the logic of their approach.

The macroscopic mechanics of anelastic medium, as well as the mechanics of any

system, is described in three steps: 1) establishing the equations of equilibrium, 2)

equations of motion, and 3) dissipation of mechanical energy. All three of these prob-

lems are solved by applying the appropriate variational principles. To obtain the equa-

tions of equilibrium, we need to minimize the free energy of the system. For small

deformations of an elastic body, the free energy, F , can be expanded in second powers

of the strain tensor, εi j:

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
. (1.7)

F = F0 +
1
2

λ(εkk)
2 +µεi jεi j, (1.8)
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where ui is the displacement, λ and µ are Lamé parameters and F0 is the free energy in

the absence of deformation (for example, the internal energy due to heat).

Since the free energy is a scalar quantity, all of the terms in the expansion of εi j

should also be scalar. The simple form of (1.8) with only two constants describing the

medium arises from the requirement of isotropy (rotational symmetry) of the medium.

Because of this symmetry, the free energy is expressed through the only two second-

order rotational invariants of the strain tensor: the trace (εkk); and the sum of the squares

of all components (εi jεi j). There also exists a third invariant, the determinant of the

strain tensor, det(ε); however it is not used because it is third order and adding it to the

free energy removes linearity.

The free energy (1.8) can also be written by separating the purely dilatational (volu-

metric) and purely deviatoric (non-volumetric, shear) strains. Dilatational strain equals

the trace of the strain tensor (∆ = εkk), whereas deviatoric strain has zero trace:

ε̃i j = εi j−
1
3

δi jεkk. (1.9)

Using this strain tensor in (1.8) leads to another expression for free energy:

F = F0 +
1
2

K(εkk)
2 +µε̃i jε̃i j, (1.10)

where K = λ+ 2
3µ is the bulk modulus. The benefit of writing the free energy in this

way is that the volumetric and shear deformations are explicitly separated.

The relation between the free energy of a system and the stress comes from thermo-

dynamics and states that stress is the derivative of the free energy with respect to strain,

holding temperature constant,

σi j =

(
∂F
∂εi j

)
T
= Kεkkδi j +2µε̃i j. (1.11)

This yields the well-known Hooke’s law or basic constitutive equation of elasticity.

Note that the quantity K here is therefore the isothermal bulk modulus. If tempera-
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ture variations occur during deformations (e.g., during adiabatic deformation, typical

in seismic waves), K would contain contributions from thermal expansion and the mod-

ulus would be different (Landau and Lifshitz, 1976a).

Switching to non-equilibrium but conservative problems, equations of motion for

an isotropic, homogenous body undergoing deformation can be determined by using

a Lagrangian formulation of mechanics and the Hamiltonian action principle. The

free energy above is the energy of strain, which will be called the potential energy

and denoted V below. The kinetic energy of a system undergoing deformation is a

function of the velocity of a point at a given time, u̇i. The Lagrangian for an isotropic,

homogenous body can be written as,

L = T −V =
∫

V

(
1
2

ρu̇iu̇i−
1
2

K(εkk)
2−µε̃i jε̃i j

)
dV, (1.12)

where ρ is the density of the body.

In expression (1.12), displacements ui can be viewed as special cases of the more

general “generalized coordinates”, α. Once the Lagrangian is expressed in terms of

generalized coordinates and their time derivatives, the equations of motion become

completely general and obtained via the Euler-Lagrange equations:

d
dt

∂L
∂α̇i
− ∂L

∂αi
= Ai, (1.13)

where Ai are the non-conservative forces (such as a driving force or force of friction).

Coordinates α can also be the valuess of ui at a certain point or some other parameters

measuring the amplitude of oscillation. In section 2.1, I will use such coordinates in

the form of relative deformations of the bodies involved in lab testing of rock samples.

So far, the case of purely elastic deformation was considered. Elastic deformation

results in oscillations and P- and S-waves traveling within the medium at velocities

VP =

√
K + 4

3µ
ρ

and VS =

√
µ
ρ
, (1.14)
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respectively.

If stress is applied to a purely elastic system, that system will often oscillate near

its equilibrium state, at frequencies determined by its size and other factors (boundary

conditions) reflected in the construction of the Lagrangian. If the stress is subsequently

removed from the system, the system will continue to oscillate but about its previous

un-stressed state. In reality, in the systems in which we are interested in this thesis,

such oscillations will quickly attenuate. Mechanical energy will be dissipated into heat

due to the “friction” occurring within the system.

To describe the internal friction caused by the motion of the system itself, the con-

cept of the dissipation function (“pseudo-potential”) is used. The dissipation function

is formulated much in the same way as the potential energy of the system. However,

unlike the potential energy, the dissipation function principally depends on the strain

rate as opposed to the strain. Just as with the free energy, the dissipation function of

an isotropic material should be invariant under rotation and translations. The dissipa-

tion function should therefore be built out of invariants of the strain-rate tensor, ε̇i j.

To produce linear equations of motion (i.e., Navier-Stokes equations for fluids), the

dissipation function should also be quadratic in ε̇i j. Using the same procedure as out-

lined for free energy (1.8), we arrive at the following two-parameter expression for the

dissipation function of anisotropic medium:

D =
1
2

ηK(ε̇kk)
2 +ηµ ˙̃εi j ˙̃εi j. (1.15)

The parameters ηK and ηµ can be considered the “bulk viscosity” and “shear viscosity”,

respectively. These parameters are well known for fluids (Landau and Lifshitz, 1976a),

for which ηµ is the dynamic viscosity and ηK is called second viscosity (although rarely

used in practice). These viscous parameters control the amounts of energy dissipation

caused by the two respective types of deformation.

The force resultant from the dissipation function (σ
′
i j) is derived in the same way as
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the elastic stress in (1.11) but taking a derivative with respect to the strain rate:

σ
′
i j =

∂D
∂ε̇i j

= ηK ε̇kkδi j +2ηµ ˙̃εi j. (1.16)

The dissipation function (1.15) gives rise to a non-conservative force, that is, mechan-

ical energy is lost from the system via viscous friction. The dissipated power per unit

volume can be written in terms of stress σ
′
i j using (1.16):

D =
1
2

σ
′
i jε̇i j. (1.17)

Hooke’s law including dissipation can now be rewritten as the sum of elastic and

viscous stresses,

σi j +σ
′
i j = δi j

(
K +ηK

d
dt

)
εkk +2

(
µ+ηµ

d
dt

)
ε̃i j, (1.18)

or in is most general form, removing the assumption of an isotropic homogenous sys-

tem,

σi j +σ
′
i j =

(
Ci jkl +ηi jkl

d
dt

)
εkl. (1.19)

In terms of the Euler-Lagrange equations, the dissipation function adds a non-conservative

generalized force,
d
dt

∂L
∂α̇i

+
∂D
∂α̇i
− ∂L

∂αi
= Fi, (1.20)

where Fi is the external force applied to the system.

Equation (1.20) produces the fundamental equations of motion of an anelastic sys-

tem subject to an external force, that is to say, a system which contains both elastic

and dissipative properties. This Lagrangian approach, or “energy approach” is based

on simple mechanical principles describing the energy of a continuum. The kinetic and

potential energies, as well as the dissipation function, are all that is needed to describe

both motion and deformation of any system. Hooke’s law is derived from the scalar

fields of elastic and free energies, making this approach universal and physically ro-
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bust. The definition of anelastic properties is also tightly controlled by the principles

of symmetry and conservation of energy, and the resulting parameters (ηK and ηµ) are

unequivocally associated with the medium as opposed to the effective elasticities and

viscosities used to explain specific deformation histories of the specimens. The great

challenge, however, is to relate these basic quantities to the observed parameters of

attenuation, such as the amplitudes and relaxation times for transient creep in various

experiments.

1.2.4 Linear viscoelastic theory

The mathematical model known as linear viscoelasticity generalizes the strain-stress

strain relations of mechanical models in section 1.2.1 by generalizing the concept of

elastic moduli. Nowick and Berry (1972) formulated this approach, which is now con-

sidered standard. It begins from Hooke’s law relating stress (σ) and strain (ε) for an

elastic material:

σ = Mε and ε = Jσ, (1.21)

where M is the elastic modulus, and J = 1/M is the compliance. For dynamic experi-

ments, a sinusoidal stress at frequency ω is applied to the material, which can be written

as the real part of the complex-valued stress:

σ = σ0eiωt . (1.22)

If the material is purely elastic, the strain is in phase with stress, and modulus M and

compliance J are real-valued. However, because of internal friction, materials deform

non-instantaneously, and their responses generally lag the applied stress in time. This

phenomenon is referred to as anelasticity. Strain resulting from the harmonic stressing

of anelastic materials at frequency ω will thus be out of phase with the stress by some

phase angle φ:

ε = ε0ei(ωt−φ). (1.23)

18



This leads to the notion of a complex modulus M?:

M? =
σ

ε
=

σ0

ε0
eiφ ≡ |M(ω)|eiφ(ω), (1.24)

which is generally thought of as a function of ω. The complex modulus can also be

written in terms of its real and imaginary parts:

M?(ω) = Mre(ω)+ iMim(ω). (1.25)

Likewise, the compliance can be written as:

J?(ω) = Jre(ω)− iJim(ω). (1.26)

In both cases, the phase lag φ is the ratio of imaginary to real parts of the modulus:

tanφ(ω) =
Mim(ω)

Mre(ω)
=

Jim(ω)

Jre(ω)
. (1.27)

This quantity tanφ is considered the principal characteristic of internal friction in ma-

terials (Lakes, 2009) and is often associated with the “quality factor”: Q = (tanφ)−1.

In summary, the main principle behind the linear viscoelastic approach is the gen-

eralization of the elastic modulus to:

1. Include an imaginary part and;

2. Become frequency-dependent.

Creep is also explained similarly to the above phase-lag experiment, that is, through

the generalization of the elastic modulus. This can be done by using the Laplace or

Fourier transforms of M(ω) and J(ω) in equations 1.25 and 1.26, or equivalently, from

the following argument. Consider a constant stress of σ0 turned on at time t = 0:

σ =

0 if t < 0,

σ0 if t ≥ 0.
(1.28)
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Figure 1.9: Strain response to boxcar stress of an anelastic material.

The strain response of an anelastic material to such stress will consist of an instanta-

neous elastic response followed by an anelastic “creep” over time towards a stationary

state (Figure 1.8). Recalling Hooke’s law (1.21), the observed time-dependent creep

function from applied stress (1.28) is generalized as:

J(t)≡ ε(t)
σ0

for t ≥ 0. (1.29)

Now consider a boxcar stress function as follows,

σ =


0 if t < 0,

σ0 if t1 ≤ t ≤ t2,

0 if t > t2.

(1.30)

The strain response of an anelastic material with stress turned on at time t1 will consist

of an instantaneous elastic response followed by an anelastic “creep” over time towards

a stationary state (just as described in eq. (1.28)). When the stress is turned off at time

t2, the material will once again undergo instantaneous elastic relaxation followed by

creep recovery towards the initial, pre-stressed state (Figure 1.9). The observed time-

dependent creep recovery function from applied stress 1.29 is generalized as follows:

N(t,∆t)≡ ε(t)
σ0

for t > t2, (1.31)
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where N(t,∆t) is the creep recovery function and ∆t = t2− t1 is the amount of time the

stress was on. The creep recovery function depends on the amount of time the stress

was on prior to turning it off as the material may have not relaxed completely.

The viscoelastic approach thus generalizes the elastic moduli to be time-dependent

(known as “fading memory”) in the time domain and complex-valued (with negative

complex arguments) in the frequency domain. This stands in contrast with the me-

chanical approach, which maintains that the elastic moduli are real-valued and constant

with time and frequency1. The fundamental difference of the viscoelastic model from

Lagrangian mechanics described in section 1.2.3 is that in mechanics, the evolution of

the system is completely determined by its current state, whereas in viscoelasticity, it

comes from an extended “memory” of the material. The relation of these models is

that of a phenomenological description to the basic physical theory. The introduction

of a basic anelastic parameter such as solid viscosity η (1.15) and solving the Euler-

Lagrange equations of motion (1.20) for the conditions of the experiment in question

should yield the time-dependent moduli and compliances observed in this experiment.

In terms of fitting experimental data, the viscoelastic model is generally much more

permissive than the mechanical model. Inferring a compliance function J(t) from creep

observations is relatively straightforward, which allows using empirical laws for it (for

example, section 1.2.2; Gribb and Cooper, 1998; Cooper, 2002; Faul et al., 2004).

By contrast, deriving the correct form of the dissipation function and inverting for its

parameters is much more complicated, and this would almost surely provide a poorer

fit to the data. However, this first-principle approach appears to be far more valuable

in terms of revealing the true physical properties of the material. This approach is

therefore undertaken in this study.

1In fact, the moduli can be time- and frequency-dependent in the mechanical approach. This may
result, for example, from temperature variations or chemical alterations occurring during deformations.
With non-linear elasticity, the moduli may also effectively depend on the amplitudes of deformation.
However, these dependences are not essential parts of the mechanical model, whereas for linear vis-
coelasticity, the entire model relies on the time-retarded character of the moduli.
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Figure 1.10: a) General hysteresis loop with stress-strain dependent loading
and unloading moduli (M↑ and M↓). b) Elementary “hysteretic mesoscopic
unit” or hysteron switching between the “open” and “closed” states (sub-
scripts o and c, respectively) under increasing or decreasing stress (arrows).

1.2.5 Semi-empirical models

An important alternative to the compliance-function based model is given by explicit

modeling of the hysteresis occurring during cyclic loading of rocks. The Preisach

model (Guyer et al., 1995) is an example of such an approach, inspired by models

of hysteresis in diamagnetic materials. As opposed to the linear viscoelastic theory,

which uses a time-retarded stress-strain relation (see section 1.2.4), the Preisach model

uses an instantaneous stress-strain relation:

ε = σJ(σ), (1.32)

where J(σ) = M−1(σ) is the stress-dependent compliance and M(σ) is the stress-

dependent modulus. These are the same quantities as in section 1.2.4 (equations (1.25)

and (1.26), except they are not time dependent). Not only is the modulus dependent

on stress, it also differs for loading (ε̇ > 0) and unloading (ε̇ < 0), with M↑ ≥M↓ (Fig-

ure 1.10a). For loading conducted in equal stress increments, σ j = σ0 + j∆σ (with

j = 1...N), the respective compliances are defined as a combination of the responses of

multiple elementary “hysteretic mesoscopic units” or, “hysterons”, denoted p j
i :

J↑(σi) = α

i

∑
j=1

p j
i and J↓(σ j) = α

N

∑
i= j

p j
i , (1.33)
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Figure 1.11: a) Discrete Preisach model during loading with N = 10 hys-
terons. Each × indicates a hysteron. The loading process is mathematically
seen as summation along rows. b) Discrete Preisach model during unload-
ing with N = 10 hysterons. Each × indicates a hysteron. The unloading
process is mathematically seen as summation along columns.

where α is some scaling factor. This can be seen as summing rows of matrix p j
i during

loading and summing its columns during unloading. A graphical picture of this pro-

cess is shown in Figure 1.11. In Figure 1.11a, as strain is applied, stress will increase

discontinuously in steps. Once a particular strain is achieved, the stress will jump and

then stay constant until the next characteristic strain level is reached, whereupon stress

will jump again. Figure 1.11b shows the unloading process which occurs in the same

discrete manner, but columns are removed during unloading as opposed to rows which

are added during loading.

In practice, the distribution of N(N +1)/2 values of p j
i is constructed by fitting the

2N values of J measured along the experimental loading and unloading curves (Guyer

et al., 1995). This gives an under-determined system of equations, which is regularized

and solved by using simulated annealing. The resulting matrix p j
i allows reproducing

the observed strain-stress curves and also to predict the behaviour of the system for

loading/unloading schedules not tested in the experiments. In this way, this empiri-

cal model steps beyond simply reproducing the experimental data. At the same time,
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the Preisach model still has no mechanical background. Its strain-rate independence

(eq. (1.32)) also represents a significant limitation, as experiments show that materials’

responses to stress may depend on strain rates (Claytor et al., 2009).

1.3 Quality Factor

Both seismic attenuation and anelasticity are conventionally described by the quality

factor, usually denoted Q. This factor was introduced from an analogy with a mechan-

ical (acoustical) or electric resonator (Knopoff, 1964). However, there exist several

ways to carry out this analogy, and also several ways to measure the Q. In the theory

of forced oscillations, the quality factor of an oscillator is defined so that its inverse,

Q−1 , gives the relative amount of damping in it. Among the several approaches to

characterizing this quantity, the one commonly used in seismology defines Q as a ratio

of peak elastic energy in the system E to energy lost after one cycle of oscillation, ∆E

(Aki and Richards, 2002):

Q = 2π
E

∆E
. (1.34)

This quantity is commonly thought to be a basic property of the material, responsible

for its dissipation of weak elastic oscillations. The choice of the elastic energy as the

numerator in (1.34) is dictated by the notion of the dissipation being caused by the

“imperfect” elastic modulus experiencing internal friction (Anderson et al., 1965). At

the microscopic level, this friction is explained by a number of mechanisms discussed

in section 2.2.

Despite the simplicity of eq (1.34), neither E nor ∆E in it are directly observable

and the fact that Q is a property of the material is not obvious. There exist several

methods of arriving at Q as combinations of observational parameters. The following

three methods summarize the most common principles of seismic Q measurements in

the lab. Most importantly for understanding the various definitions of the quality factor,

we need to differentiate between forced and resonant oscillations, and also between

time- and frequency-domain measurements.
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Figure 1.12: a) Example decay curves for Q = 10 and Q = 20. Waves
will damp out faster for lower Q values. b) Example resonance peak with
Q = 20. Qspec can be measured from the peak.

First, for a resonant system, which is usually considered with low damping, the Q

can be measured by relating the width of the peak in the power spectrum (∆ω) to the

resonant frequency, ω0 by the following expression:

Qspec =
ω0

∆ω
. (1.35)

This is the spectral Q, which is most convenient when stationary, forced oscillations at

a range of frequencies near the resonance are studied.

In contrast to the spectral Q, the logarithmic-decrement Q is measured from the

time decay of free oscillations, taken in the time domain and near the single resonant

frequency. This Q is the measure of the average rate at which the system damps over n

cycles:

Qdecay =

√
π2

χ2 +
1
4
≈ π

χ
, where χ =

1
n

log
∣∣∣∣ y1

yn+1

∣∣∣∣ . (1.36)

and yn are the oscillation amplitudes at cycles n = 1...N. Because they are measured

on basically the same system (linear oscillator near resonance), Qdecay and Qspec are

consistent with each other.

The third broadly used method of measuring the phase-lag Q uses forced oscilla-
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tions conducted far from resonance, typically at ω� ω0. In this method, Q is deter-

mined from the phase lag, φ, between the driving force and the resulting strain response

(e.g., Jackson and Paterson, 1993):

Qphase =
1

tanφ
. (1.37)

Note that the phenomenological definition of Q (1.34) and its empirical measures

(1.35), (1.36) and (1.37) are defined only for a “damped linear oscillator” in mechanics,

and they are equivalent only for measurements (1.35) and (1.36) conducted near the

natural frequency ω0. Considering the energy-based Q (1.34) for a linear oscillator,

Morozov (2011e) showed that it is equivalent to Qphase (1.37) for ω� ω0, but subject

to uncertainties in the definition of “stored” energy E in (1.34).

For complex systems, such as seismic waves or the free oscillations of the Earth, the

above values of Q may deviate from each other further. In particular, it is clear that all

four of the above Q’s relate to some kind of a “linear oscillator” which is not necessarily

a simple spring-mass arrangement. For complex mechanical or electric systems, the el-

ementary oscillators are represented by certain (“normal”) oscillation modes and do not

correspond to any specific part of the system. Therefore, each of the above Q’s also be-

comes multi-valued and associated with the specific oscillation modes. When extended

to forced oscillations, the Q defined in (1.34) is frequency-dependent for seismic waves

and even the simplest mechanical systems (Morozov, 2011e). For the phase-lag Q

(1.37), this is also shown in section 3.1.1. Finally, for very complex systems, observa-

tional seismology also uses the concept of “scattering Q”, which empirically describes

the results of attenuation measurements using scattered waves. This type of Q was also

inferred from an analogy with plane body waves and eq. (1.34) (Aki and Chouet, 1975).

Recently, Morozov (2009, 2010a) pointed out that this Q is a highly controversial and

ambiguous quantity. I do not address the complex issue of scattering Q in this Thesis.

Thus, in interpreting the results of attenuation measurements, it is important to

clearly see the specific nature of the observed parameters without relying on intuituve
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analogies. The best approach is likely to abandon the use of Q as rock property (1.34)

altogether and adhere to first physical principles in describing the processes of energy

dissipation. By modeling the various observable factors of types (1.35)-(1.37) from

first principles, we become able to explain the observations and rigorously constrain

the intrinsic dissipative properties of the material.

1.4 Experimental Observations

Many experimental techniques for attenuation measurements involve stressing a cylin-

drical sample in some way. Stress is typically applied through torsion (twisting) or

axial deformation (stretching/compressing) (Figure 1.13). In addition, stress may be

quasi-static, oscillatory, or impulsive. When using harmonic oscillations, another ma-

jor distinction between the different types of measurements is in using frequencies that

are either comparable or much lower than the resonant frequencies of the apparatus.

The two major variables are thus the stress amplitude and frequency.

In the following, I give brief outlines of the principles of lab experiments which are

the closest to the type of the dissipation process analyzed in this thesis. Such experi-

ments generally use time intervals (or periods) comparable or longer than the periods

of free oscillations of the bodies. Free oscillation of the Earth or “slow” deformation

of a rock specimen in the lab represent examples of such experiments. However, I do

not consider a vast range of techniques which use seismic pulses traveling through the

body of interest. Such experiments include most measurements with body- and surface

waves done in seismology, as well as ultrasonic measurements in boreholes and in the

lab.

As shown below, for near-resonant or sub-resonant experiments, a common type

of quantity is measured, which is typically related to the viscoelastic quality factor of

the material, Q. As shown in section 1.3, this parameter can be obtained from two

complementary types of approaches: time-domain and frequency-domain. For time-

domain measurements, the Q is obtained from the variations of deformation with time,
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Figure 1.13: Schematic creep experiment. Constant tensile or torsional
force is applied to one end of the sample while the other end is fixed.

and for frequency-domain - from the shapes of amplitude spectra (near resonances) and

phase shifts (below the resonances).

1.4.1 Creep

In creep experiments, a constant stress is applied to the sample for an extended period

of time (on the order of hours), and the resultant deformation is measured as a func-

tion of time. Anelastic (as well as more generally, inelastic) properties of the material

manifest themselves as non-instantaneous deformations. Typical strain amplitudes in

creep experiments are large, greater than 10−5 (Chopra, 1997; Jackson et al., 2004).

As explained in section 1.2.2, experimental creep curves are usually subdivided into an

instantaneous elastic deformation followed by anelastic creep and then plastic defor-

mation (Figure 1.7b).

Creep curves are often fit with Burgers models (Figure 1.7) or other empirical laws,

such as Andrade (1.2), Lomnitz (1.4) or exponential (1.5). In certain cases, combina-

tions of multiple empirical curves are needed to achieve an accurate fit to the data.

The advantage of quasi-static creep experiments is in emphasizing the steady-state,

plastic deformation. Such deformation is achieved at very high strains of about 10−4

to 10−2 (Figure 1.14). However, in this thesis, I am only interested in the recover-

able (anelastic+elastic) deformations at low strains comparable to those in seismic

waves. Such recoverable deformations are best studied by frequency-domain methods

described below.
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Figure 1.14: Example creep curve for olivine from Chopra (1997). Dark
squares indicate strain and light squares indicate stress. Instantaneous elas-
tic deformation followed by anelastic creep and then plastic deformation is
seen.

1.4.2 Phase lag methods

Phase-lag experimental setups are similar to creep tests except they use weak forces

oscillating near-harmonically at a specific frequency, as opposed to constant forces in

creep experiments. Phase-lag experiments rely on measuring the phase lag between the

applied force and the resulting strain. The force-strain lag is difficult to measure di-

rectly, and in order to obtain this lag, an additional elastic standard is usually attached

in series with the rock sample (Figure 1.15). Also, the oscillation frequency is var-

ied and the phase lag between the deformations of the sample and elastic standard is

measured. The tangent of this phase lag, tanφ, is viewed as the key characteristic of

attenuation within the material (Lakes, 2009), and often treated as the inverse quality

factor: Q−1 = tanφ (section 1.3; Faul et al., 2004; Jackson et al., 2004; Tisato et al.,

2010).

Phase-lag experiments are typically carried out at seismic frequencies, from 10−3

to 1 Hz for Jackson and Paterson (1993) and at 1 to 50 Hz for Tisato et al. (2010). These

frequencies are significantly lower than the resonant frequency of typical 10− 20 cm

samples, which often have resonant frequencies in the kHz range.
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Figure 1.15: Schematic apparatus for phase-lag attenuation measurements.
A torsional or tensile oscillatory force is applied to the elastic standard and
through it, to the sample. The response of the sample will lag the standard
and as such, the driving force. The phase lag is an indication of anelasticity
in the sample. The elastic standard should be in phase with the driving force.

Phase-lag results often show the phase lags decreasing with frequency (Figure 1.16,

Jackson et al., 2004; Tisato et al., 2010). In materials science, this decrease of Q−1 with

frequency is called the “high-temperature background” (Cooper, 2002), and in seismol-

ogy, a similar decrease is attributed to the “absorption band” of the mantle (Anderson

et al., 1977). If dissipation in materials behaves linearly, phase lag should increase

linearly with frequency (see section 3.1.1). This can be thought of as follows: as the

specimen is cycled in strain, the amount of energy dissipated increases slower than the

frequency. Explaining the phenomena of phase lag decreasing with frequency is the

focus of considerable research. Phase lags, as well as the seismic Q−1 in general, also

increase with temperature (Ito and Sato, 1991; Cooper, 2002).

Phase-lag experiments allow substantial sophistication in achieving the conditions

close to those experienced by the rocks within deep crust and mantle. For example,

the torsional apparatus by Jackson and Paterson (1993) contains a pressure vessel and

a furnace (Figure 1.17) which allows conducting measurements at pressures up to 300

MPa and temperatures to 1500 K. Because of these capabilites, such experiments are

presently viewed as the most reliable source of information about the in situ attenuation

properties of the Earth’s mantle. At the same time, potentially, this more complicated

design also creates additional sources of friction, such as caused by the viscosity of

the argon atmosphere and by significant thermal gradients within the assembly. These
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Figure 1.16: Example longitudinal phase-lag data for Plexiglas (Tisato
et al., 2010). Notice the existence of a spectral peak around 3 Hz followed
by a decrease with frequency.

issues are dealt with by using a number of empirical corrections (Jackson and Paterson,

1993). In the present study, I do not attempt to consider the full complexity of this

problem but only focus on the physical model of dissipation attributed to the specimen

and standard (Figure 1.15).

1.4.3 Resonance methods

Performing essentially the same forced oscillation experiment but at much higher fre-

quencies, produces a plot of the resonant peak of the sample as opposed to phase lag.

Only the sample is required in this case, and the standard is not necessary since phase

lag will not be measured. This experiment is also often done with a bar instead of

a cylinder and using flexural forces as opposed to tensile or torsional (Johnson et al.,

2004). For a purely elastic body, the resonant peak would occur at the natural frequency

of free oscillation and have a width of zero. Anelasticity causes the width of the res-

onant peak to increase (eq. (1.35) and Figure 1.19). The relative width of the peak is

closely related to the phase lag in a sub-resonant, low-frequency experiment (section

1.3). Several resonant peaks for PVC specimens (polyvinyl chloride) are shown in Fig-

31



Figure 1.17: Torsional attenuation measurement apparatus including inter-
nal furnace and pressure vessel (Jackson and Paterson, 1993).

Figure 1.18: Schematic resonance experiment. The sample is also often a
bar and the force can also be flexural. A frequency sweep near resonance is
performed, and the width of the resonant peak measured.
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Figure 1.19: Response for PVC to various strains displays a linear response.
The upward and downward sweeps coincide (Johnson et al., 1996).

ure 1.19. For deformations up to about 10−5, PVC behaves linearly, and varying the

driving amplitude does not affect the location or width of the peak. The quality factor

can be extracted from resonance peaks by taking the ratio of spectral width to spectral

peak. For most rocks, this process is highly non-linear and the spectral Q is a function

of strain (Figure 1.20).

1.4.4 Slow Dynamics

A relatively new class of mechanical-energy dissipation effects reported for several

geomaterials since mid-1990’s is called “slow dynamics” (TenCate, 2011). Slow-

dynamics experiments are carried out in much the same way as resonance experiments,

but the strains used to measure the resonant peaks are very low. These strains are about

10−8, compared with typical 10−5−10−2 strain amplitudes used in the traditional creep

experiments (Jackson and Paterson, 1993; Chopra, 1997; TenCate, 2011). Another pe-

culiarity of slow-dynamics experiments is that resonant strains are measured on top of

much stronger “conditioning” strains. Slow dynamics investigates how the resonant

peak moves and becomes asymmetric with respect to frequency sweep direction as it is
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Figure 1.20: Response of a typical rock (Vosages sandstone) to various
strains displaying non-linear behaviour. The peak is asymmetric and fre-
quency of the peak changes with strain amplitude. The lower the strain, the
closer to a symmetric “linear” peak. Note the up/down sweep asymmetry
that becomes more apparent for higher strains (TenCate, 2011).

conditioned with different amplitudes of strain (Figure 1.20). The non-linear effects on

spectral-peak shapes are also called “peak bending”.

In a slow-dynamics experiment, there are two strains applied, one is the larger con-

ditioning strain that runs at the resonant frequency of the sample and the other is the

weaker strain sweep frequency that determines the resonant frequency. Most rocks

show linear resonant peaks up until around 10−6 strain amplitude. At higher strains,

peak bending begins to occur, and the peaks obtained by up-sweep and down-sweeps

in frequency begin to differ (Figure 1.20). The up/down asymmetry is dependent on

the sweep rate and is referred to as the “rate effect”. If the sample is given ample time

to equilibrate at a particular frequency before the measurement is made, rate effects

are eliminated (TenCate, 2011). If the times between frequency steps are small, rate

effects are observable and the material is thought to possess a “memory” of being at a

particular strain level (TenCate, 2011, Figure 1.20).

When the conditioning strain is switched on and off for periods of about 15 min-
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Figure 1.21: Resonant frequency as a function of time for Berea sand-
stone. A conditioning strain of 10−6 is applied at 0 seconds and kept on
for 1000s. The resonant frequency is measured every 50 seconds using a
very low strain and exhibits a creep response. The conditioning strain is
cycled every 1000s. (TenCate, 2011).

utes, the elastic modulus changes, leading to weak (∼ 0.1%) variations in the resonant

frequency (Figure 1.21). Shapes of these variations are very similar to those obtained in

quasi-static creep (section 1.2.1), with “instantaneous” responses followed by gradual

relaxation as about log(t). Similarly to creep, these phenomena are observed upon both

turning the conditioning strain on and switching it off (Figure 1.21).

Current explanations of slow dynamics in rocks are similar to those of recoverable

(anelastic) creep (TenCate, 2011). An intriguing question is how the strain energy

(“memory”) of such low magnitude gets stored within the microscopic structure of the

rock, which is subjected to much stronger conditioning. It is believed that microcracks,

“sticky fractures”, and thermoelastic effects at crack tips are important factors for this

type of dissipation. TenCate (2011) also performed investigations of the effects of pore

water and found that slow dynamics is present even in extremely dry rock specimens in

ultra-high vacuum.

However, overall, it appears that the understanding of slow dynamics is still insuf-

ficient. With regard to our model (chapter 2), slow dynamics is important as a clear

indicator of non-linear effects taking place during oscillations and energy dissipation.

Similarly to interpretations of the creep and phase-lag experiments, this understanding
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could be improved by utilizing the physical concepts developed in the present study.
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Chapter 2

Approach

The mathematical foundation of the analytical and numerical models of this thesis fol-

lows the Landau and Lifshitz’s (1976) approach to continuum mechanics in section

1.2.3. The basic principle of this method is to determine the kinetic and potential en-

ergies of the system as functions of some generalized coordinates and velocities and,

using the Hamiltonian variational principle and Euler-Lagrange equations (1.20), de-

rive the equations of motion for these generalized coordinates.

The models of this study consist of simple arrangements of one or two cylinders

(section 1.4), which reproduce the key features of several devices currently used for

seismic attenuation measurements in the lab (Jackson and Paterson, 1993; Gribb and

Cooper, 1998; Tisato et al., 2010). Two types of experimental apparatuses to measure

the phase-lags between driving forces and system responses have been built by using

cylindrical rock samples. These same apparatuses are also capable of performing creep

experiments. Generally, one type of such systems uses compression along the length

of the cylinder (Tisato et al., 2010), while the other applies torsion to one end of the

cylinder (Figure 2.1) (Jackson and Paterson, 1993). The advantage of the first of these

designs is in assessing the longitudinal deformations, whereas the second specifically

focuses on shear deformation. Ideally, it would be best to carry out both of such exper-

iments with the same specimen.
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The traditional interpretations and even the designs of such experiments are influ-

enced by the viscoelastic model of solids. For example, in the design of the longitudi-

nal phase-lag apparatus, it is assumed that the in situ strain of the specimen is phase-

delayed with respect to stress, and that the deformation of the elastic standard gives

the phase of the stress (Jackson and Paterson, 1993), However, the in situ stress is very

difficult to measure, and it consists, for example, of elastic, viscous, and thermoelastic

parts which may be difficult to separate. These stresses may also depend on the shapes

of the specimen and other parts of the device, which may be far from the simplified

cylinders (Figure 1.15 on page 30). Therefore, one needs to be careful about making

assumptions about a universal “phase-lag” property of the material and resort strictly

to the “observables”, such as the measured deformations of the cylinders, and to physi-

cal laws. Below, I describe such a rigorous approach using the Lagrangian mechanical

model and thermoelastic effects to numerically simulate the behaviours of experimen-

tal apparatuses. This is still a strictly macroscopic description, in which the mechanics

of the medium is described by very few parameters averaged over large numbers of el-

ementary units, such as atoms, grains, defects in the crystalline lattices, or dislocations.

At the end of this chapter, I will discuss the dislocation and kinetic effects as potential

microscopic mechanisms of anelasticity.

2.1 Model

In this model, I consider a system of two cylinders attached along the z-axis, held at

the base, and subject to a periodic driving force applied at the opposite end (Figure

2.1). Two types of deformation are considered, one with the force applied in the z-

direction (longitudinal) and another with a torque applied in the θ-direction (torsional).

The cylinder attached to the base is called the standard and is assumed to have no

internal dissipation, as in the apparatus by Jackson and Paterson (1993). The cylinder

attached on top of the standard is the specimen in which the internal dissipation is

being measured. Because of internal friction, its deformation will lag the standard
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Figure 2.1: Schematic for measuring phase lags for a) compression or ten-
sion and b) torsion.

by a phase-lag angle, which is being measured (Figure 2.1). Thus, in this model, the

measured phase lag reflects the difference in the observable strains in two parts of the

experimental device, and no assumptions about the internal stress are being made. This

is the key difference of the present approach from the traditional viscoelastic model.

In the viscoelastic interpretation, the phase lag is a property of the material (Lakes,

2009) and directly related to the material Q of the specimen by eq. (1.37) (Jackson and

Paterson, 1993; Cooper, 2002; Tisato et al., 2010). However, note that the phase of

the stress is only an inferred quantity, which is different, for example, when the elastic

or total stress is considered. The unambiguous and actually measured quantity is the

phase lag between the deformations of the two cylinders. In the following, I predict

this phase lag theoretically and numerically for both the torsional and compressional

scenarios, and show that it depends on frequencies and in certain cases - on the shape

of the specimen. Thus, the simple formula (1.37) becomes generally insufficient.

The Lagrangian for the system can be written as follows:

L = T −V =
∫

V

(
ρ

2
u̇iu̇i−

1
2

K(εkk)
2−µε̃i jε̃i j

)
dV, (2.1)

where ρ is the density of the cylinder, K is the bulk modulus, µ is the shear modulus,

u̇i is the velocity of a point, ε is the strain tensor and ε̃ is the deviatoric strain tensor
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(1.9), and V is the total volume of the system. Denoting any of the three quantities in

the right-hand side of eq. (2.1) by f , the integrals over the total volume break integrals

over the sample and the other over the standard:

∫
V

f dV =
∫

V1

f dV1 +
∫

V2

f dV2 =
∫ 2π

0

∫ R1

0

∫ H1

0
f rdrdzdθ+

∫ 2π

0

∫ R2

0

∫ H2

0
f rdrdzdθ.

(2.2)

By utilizing the simple geometry of these experiments, the relative deformation of each

of the two cylinders can be considered as near-uniform and described by a single pa-

rameter, αi = ∆Hi/Hi for compression and αi = θi for torsion, where i = 1 for the

standard and i = 2 for the specimen. For the resonance and creep experiments, the

subscript i is dropped, as there is only the sample. With these definitions of “gener-

alized coordinates” α, solutions for ~u are given in Appendix A. The Lagrangian and

dissipation functions can then be written in matrix form as follows:

L = T −V = α̇iTi jα̇ j−αiVi jα j and D = α̇iDi jα̇ j, (2.3)

where α̇ is the rate of deformation. In this expression, matrices Ti j and Vi j for both

longitudinal and torsional deformations can be found in Appendix A.

Another type of experiment simulated with a similar arrangement of cylinders in-

volves measurement of the width of the spectral peak near resonance. In this case, the

standard is not used (Figure 2.2). The specimen is driven by either harmonic compres-

sion or torsion applied to its end, and the displacement amplitude(s) measured. From

these amplitudes, Q is derived by using eq. (1.35). From the expressions for the La-

grangian (eq. 2.1), the complete Euler-Lagrange equations of motion are:

d
dt

∂L
∂α̇ j
− ∂L

∂α j
= Fi(t). (2.4)

These equations describe the mechanical behaviour of the conservative system of the

modelled one- or two-cylinder system in the absence of energy dissipation. Similarly

to the above decomposition of the Lagrangian, the quadratic dissipation function (1.15)
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Figure 2.2: Schematic for resonance or creep experiment. Both tensional
(∆H) and torsional (θ) deformations are shown.

can also be expressed as a quadratic form in terms of α̇:

α̇iDi jα̇ j =
∫

V

(
1
2

η∆∆̇
2 +ηµ ˙̃εi j ˙̃εi j

)
dV, (2.5)

with matrix elements Di j given for longitudinal and torsional cases given in Appendix

A. With this dissipation, the equations of motion modify to:

d
dt

∂L
∂α̇n

+
D

∂α̇n
− ∂L

∂αn
= Fn(t). (2.6)

2.1.1 Linear rheology

Linear rheology (with forces of friction proportional to the strain rates) corresponds

to a quadratic dissipation function eq. (1.15). Using the Euler-Lagrange equations of

motion (2.6) the equation of motion becomes:

Tnmα̈m +Dnmα̇m +Vnmαm = Fn. (2.7)

In the case of the resonance and phase-lag experiments, the driving force is harmonic

(Fn(t) = Fneiωt), and so the response will also be harmonic (αm(t) = αmeiωt). Substi-

tuting these quantities into equation (2.7), we obtain a system of one or two equations

(for one- and two-cylinder cases, respectively) for a damped, driven linear harmonic
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oscillator:

K~α = ~F where K =−ω
2T+ iωD+V, (2.8)

where matrices T, V, and D describing the kinetic and potential energies, and energy

dissipation rates and are given in Appendix A. The stationary response of the system is

given by the inverse matrix: α1

α2

= K−1

F1

F2

 . (2.9)

For any given external force vector ~F , the resulting α1 represents the response of the

standard and α2 represents the response of the sample. Both of these values are complex

quantities and functions of ω, which allows evaluating both the amplitudes and phases

of responses to the force. From these responses, all types of observable Q values in eqs

(1.35), (1.36) and (1.37) can be obtained.

The low-frequency limit, useful for sub-resonant phase lag experiments, can be sim-

plified by removing the kinetic term T. The inverse matrix K−1 can be approximated

for low frequencies using a geometric series as follows:

K−1 ≈ (V+ iωD)−1 = V−1(1+ iωDV−1)−1 ≈ V−1(1− iωDV−1). (2.10)

In creep experiments, a single cylinder is subject to a constant force. Equation (2.7)

becomes one dimensional and the equation of motion becomes:

T α̈+Dα̇+V α = F, (2.11)

where T , D and V are kinetic energy, dissipation and potential energy, respectively.

Expressions for these quantities for a single cylinder are given in Appendix A.
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2.1.2 Non-linear rheology

As suggested by early models of anelasticity by Knopoff (1964), more recent studies of

mantle rheology (Karato and Spetzler, 1990), by recent viscosity modeling of the free

oscillation of the Earth (Morozov, 2010c), and also by the results in this thesis, dissipa-

tion in solids is likely non-linear. Linear rheology is characterised by a quadratic dis-

sipation function (1.15) and as a result, quadratic dependence of the energy-dissipation

rate on frequency for harmonic oscillations:

P∼ ˙̃ε2
= ω

2
ε̂

2, (2.12)

where ε̂ is the strain amplitude of oscillations. Because the dissipated power is pro-

portional to ω2, Q−1 linearly increases with frequency. Such an increase is rarely ob-

served for seismic waves, for which Q−1 tends to be closer to a constant or decreases

with frequency. A constant Q can result from “dry” (Coulomb) friction (Knopoff and

MacDonald, 1958). In terms of the Lagrangian formalism, such models imply non-

quadratic dissipation functions.

In fluid dynamics, non-Newtonian fluids, for which the viscous stress tensor non-

linearly depends on strain rates, are well known (Tropea et al., 2007). Examples of such

fluids include machine oils, paints, ketchup, blood, and shampoo. The dependence of

stress on strain rate and other factors (temperature, pressure, chemical composition of

the surfaces, as well as oscillatory or static character of shear) in such fluids can be

complex. In geodynamics, the “rheological” flow of mantle rock is also treated as

non-Newtonian fluid flow. The strain-rate stress relation for the mantle is non-linear

and written in the form of power-law relations between the applied stress, σ, and the

resultant deformation rate, ε̇ (Karato, 2008):

ε̇ ∝ σ
n, (2.13)

where the rheological parameter n depends on the interpreted microscopic dissipation
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mechanism and equals ∼ 1 for diffusion creep and 3.5 for dislocation creep in olivine

within the upper mantle (Karato and Wu, 1993).

Equation (2.13) is usually interpreted as giving the rate of steady-state flow respond-

ing to certain stress. However, to transform it into a mechanical law, it is important to

express the viscous stress as a function of strain rate:

σ ∝ ε̇
ν, (2.14)

where ν = 1/n becomes the new rheologic parameter. Similar to eq. (1.16), such vis-

cous stress can be obtained from a dissipation function D with a power-law dependence

on ε̇. Similarly to the case of elasticity (section1.2.3), for an isotropic medium, such

dissipation function can be written in terms of the first two invariants of the strain-rate

matrix, ε̇:

IK = τ
2
K

∆̇2

2
, Iµ = τ

2
µ

˙̃εi j ˙̃εi j

2
. (2.15)

Using these invariants (the deviatoric strain, ε̃ and dilatational strain, ∆), let us construct

a dissipation function:

D =
ηK

τ2
K

DK(IK)+
2ηµ

τ2
µ

Dµ(Iµ), (2.16)

where η are dissipation parameters (solid viscosities) corresponding to dilatational and

deviatoric deformation, respectively. Parameters τ in the denominators are necessary

to keep the values of η measured in viscosity units ([Pa·s]). These parameters are

determined by the units selected for η and can be set equal 1 sec for convenience.

Further, we will use power-law forms for the dissipation functions corresponding

to the dilatational and deviatoric strains, and assume that these strains do not interact:

DK = IνK
K and Dµ = Iνµ

µ . (2.17)
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Therefore, the power-law non-linear dissipation function, Dnl becomes:

Dnl =
∫

V

[
ηK

τ2
K

(
τ

2
K

∆̇2

2

)νK

+
2ηµ

τ2
µ

(
τ

2
µ

˙̃εi j ˙̃εi j

2

)νµ
]

dV. (2.18)

This dissipation function evaluated for our two- or one-cylinder systems for both ten-

sional and torsional deformations is shown in Appendix A. When νK = νµ = 1, this

dissipation function reduces to the quadratic case in eq. (1.15) and leads to linear

equations of motion. This case corresponds to fluid viscosity. A power of ν = 0.5 cor-

responds to dry friction, with the resulting frictional stress being independent of strain

rates. Results from free oscillations of the Earth suggest a power between 0.5-0.6 for

Earth materials (Morozov, 2010c). Results closer to dry friction appear intuitive as

solids can be expected to be “drier” than liquids.

We can similarly extend the equations of motion (1.16) to non-linear rheology. Con-

sider the dissipation function per unit volume for a torsional system with τµ = 1:

Dnl = ηµ

( ˙̃εi j ˙̃εi j

2

)ν

. (2.19)

The viscous stress arising from this dissipation function is:

σ
′
i j =

∂Dnl

∂ ˙̃εi j
= νηµ

( ˙̃εi j ˙̃εi j

2

)ν−1
˙̃εi j = ηeff ˙̃εi j , where ηeff = νηµ

( ˙̃εi j ˙̃εi j

2

)ν−1

. (2.20)

The ratio of viscous stress to strain rate gives the “effective viscosity”, ηeff. This ef-

fective viscosity is constant for linear rheology (ν = 1) but depends on the strain rate

for non-linear rheology (ν 6= 1). Expressions for ηeff for both torsional and tensional

experiments are given in Appendix A.

The parameters reflective of anelasticity are now the non-linear viscosities, η and

the rheologic exponents, ν. The exponents are responsible for the fundamental nature

of the microscopic mechanism of anelasticity, whereas η’s represent the amount of

contribution from this mechanism.
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Along with non-linearity, equation 2.18 emphasize another important aspect of the

rheological model used in this Thesis: the non-Newtonian solid is compressible, and

consequently possesses both shear and bulk dissipation. Usually, in fluid-flow mod-

els, bulk viscosity is disregarded because of the predominance of shear deformations.

However, in small anelastic deformations of solids (such as in a seismic P wave), bulk

deformations are significant, and in general, the associated viscosity cannot be ignored.

In phase-lag observations, the phase lags are usually small (below∼ 0.1 rad), which

suggests that the stresses caused by dissipation are much weaker than elastic stresses.

I will therefore still consider the elasticity as linear (quadratic in terms of energy),

and only assume a non-quadratic, power-law dissipation function. To approximately

account for weak non-linear dissipation, I will try replacing it with an “equivalent”

linear dissipation. Consider the equation of motion for forced harmonic oscillations:

(
−ω

2Ti j +Vi j
)

q j +
∂D
∂q̇i

= Fi, (2.21)

where Ti j and Vi j are the coefficients of quadratic forms for the kinetic and potential

energies, respectively, and D is the non-quadratic dissipation function. Let us assume

we have a solution for the dissipation-free case determined for the same external force:

~q0 =
(
−ω

2T+V
)−1~F . (2.22)

In order to solve eq (2.21) approximately, let us replace the dissipation function D with

a quadratic one:

D2 =
1
2

D̃i jq̇iq̇ j, where D̃i j ≡ D̃ ji, (2.23)

which approximates the average energy dissipation in each of the generalized variables

qi: 〈
q̇i

∂D2

∂q̇i

〉
= D̃i j〈q̇iq̇ j〉=

〈
q̇i

∂D
∂q̇i

〉
, (2.24)

where all averages are evaluated for the solution ~q0. With our selection of variables
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non-interfering in terms of dissipation (qi = αi), a diagonal matrix can be taken for D̃i j,

with ith diagonal element:

D̃ii =

〈
α̇i

∂D
∂α̇i

〉
α̇2

i

∣∣∣∣∣∣
~α=~α0

(2.25)

With this new dissipation function, the solution becomes:

~α =
(
−ω

2T+ iω2ν−1D̃+V
)−1~F , (2.26)

where expressions for T, D̃ and V are given in Appendix A. For any frequency ω,

this solution should be close to ~α0 and dissipate the correct average amount of energy

through each degree of freedom of the system.

Using the non-linear power-law dissipation function in (2.18) but setting the powers

νK = νµ = ν and τK = τµ = 1, we obtain:

D =
∫

V

[
ηK

(
∆̇2

2

)ν

+2ηµ

( ˙̃εi j ˙̃εi j

2

)ν
]

dV. (2.27)

Because the concepts of bulk and shear viscosities in Earth solids are still not well

established, the relative magnitudes of these viscosities are unclear. For simplicity, I

always use identical values of the power-law exponents ν for these viscosities. With

regard to the relative levels of η for them, several approaches can be taken. First,

from seismic observations, bulk attenuation appears to be much lower than the shear

one (Q−1
K ≈ 0; Knopoff, 1964), and consequently we may try ηK ≈ 0 (note that in the

same paper, Knopoff (1964) also showed cases requiring non-zero Q−1
K ). On the other

hand, the approach to dissipation draws from analogies with elasticity, in which the

elastic moduli for rocks are comparable: λ≈ µ and K ≈ 5µ/3, it appears reasonable to

also suggest that maybe the viscosities ar also comparable: ηλ ≈ ηµ and ηK ≈ 5ηµ/3.

Another interesting choice is the case of zero Poisson’s ratio: λ ≈ 0, and the elastic

solid deforming without additional transverse deformation. For friction, this could be

the simplest a priori assumption. Taking this case for an analogy, we would have ηλ≈ 0
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and ηK ≈ 2ηµ/3. However, because of this variability of ideas and general complexity

of the problem, in the examples below, I only approximate the above models by taking

either ηK ≈ 0 or ηK ≈ ηµ as characteristic examples.

2.2 Dislocations and Kinetic Effects

Viscosity expressions (2.18) give only a macroscopic picture of mechanical-energy dis-

sipation, and only for purely mechanical friction. At the microscopic level, these mech-

anisms should be described by relative movements of various parts of the material, such

as grain boundary sliding, sliding on dislocations in the crystalline lattice, and similar

processes. Apparently, such mechanical processes can be considered “instantaneous”

and causing the greatest energy dissipation during the fastest deformation. Thus, the

characteristic property of viscosity is its direct relation to the strain rate, ε̇.

Another important cause of mechanical energy being dissipated, and consequently

tanφ decreasing with frequency (Figure 1.16), could be in non-mechanical effects, such

as electric and magnetic interactions, diffusion of point defects, movements of disloca-

tions (Nowick and Berry, 1972), and other internal changes occurring within material

under stress. The characteristic feature of such effects is in their progressive devel-

opment with time, as a response to variation in the stress within the material. The

operation of kinetic relaxation in a constant-stress creep experiment (section 1.2.1) can

be described as follows: 1) when the stress is quickly applied, the deformation is fast,

but no dissipation occurs, 2) while remaining under constant stress, the elastic modu-

lus slowly “relaxes” due to internal changes occurring within the material. During this

modulus relaxation, the elastic energy continues to increase, and yet the dissipation

of energy also occurs. This picture is opposite to viscosity, for which the fast phase

1) would account for most of the dissipated energy. The magnitude of kinetic effects

for seismic waves within the mantle is also debatable, because for seismic strain levels

(10−10 to 10−8), the corresponding pressure variations are 10−9 to 10−7 of the ambient

pressure, and thermoelastic temperature variations have similar magnitudes. Neverthe-
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less, this kinetic picture is almost exclusively used for explaining anelasticity in Earth

materials (Nowick and Berry, 1972; Karato and Wu, 1993; Karato, 2008; Lakes, 2009).

Kinetic processes are characterized by their “strengths” and relaxation times. In

the existing models (Karato, 2008), these relaxation times are recognised from the po-

sitions of the absorption peaks in the Q−1 or phase-lag spectra (apparently close to

0.2-0.3 s in the Plexiglas study by Tisato et al., 2010; Figure 1.16 in section 1.4.2).

The dissipation is most effective at oscillation periods close to these times. This in-

crease in dissipation effectively makes the viscosity parameters frequency-dependent

for harmonic processes.

To describe the kinetic processes mathematically, viscoelastic treatments (e.g., Liu

et al., 1976; Cooper, 2002) usually invoke the frequency-dependence of the in situ

material properties, or equivalently, material memory (see section 1.2.4). Such time-

delayed or frequency-dependent effects are inconsistent, or at least very awkward to

reconcile with our Lagrangian model, which is based on the traditional instantaneous

mechanical interactions. However, such time-delayed interactions are also not needed,

and the Lagrangian model can adequately describe relaxation processes. Note that

generally, kinetic processes (diffusion, thermal fluxes) take place in space and cannot

be reduced to local material memory (Morozov, 2011e,f).

Beyond relying on the empirical relaxation times, kinetic processes are also difficult

to describe mechanically. Models for dependences of relaxation strengths on pressure

and temperature were created based on the Arrhenius equation known in chemistry

(e.g., Karato and Wu, 1993); however, the stress fields produced by kinetic processes

have been poorly studied. In the existing theory of anelasticity, kinetic processes com-

prise numerous microscopic processes within the material (Nowick and Berry, 1972).

One, and perhaps the most important process of such kind is thermoelasticity, which is

related to variations of temperature and consequently heat dissipation as a result of ther-

mal expansion of the material. Thermoelastic effects are “kinetic” in the above sense,

i.e., this energy dissipation gradually increases with time. However, rigorously, these

processes have no definite “relaxation times”, which can vary from zero to infinity, de-
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pending on how the heat exchange is maintained within the system (Morozov, 2011f).

Morozov (2011f) estimated that thermoelastic dissipation can in principle be responsi-

ble for the entire seismic attenuation within the upper mantle (Q≥ 80) and in the deep

crust (Q ≈ 1000); see also Table B.4 in Appendix A). In the experiment considered

here, thermoelastic effects likely explain the approximately 20% absorption peak in

the present device (Figure 2.1a). Consequently, this type of kinetic processes deserves

special attention. Also, fortunately, the physics of thermoelastic effects is well known

(Landau and Lifshitz, 1976a), and they can be readily described at the macroscopic

level used in this thesis.

2.3 Thermoelasticity

Thermoelastic effects represent an important cause of energy dissipation in solids (Hay-

den et al., 1965). Such mechanisms should be most pronounced for grainy, polycrys-

talline materials, and they lead to Q−1 decreasing with frequency (Landau and Lifshitz,

1976a). In our case, compression of the cylinder (Figure 2.1) will cause a reduction of

its volume and an increase of temperature. Conversely, quick relaxation will cause an

increase in volume and a decrease in temperature. If one of these states is maintained

for a certain time interval, the heat will be redistributed, irreversibly annealing the tem-

perature and adding to the mechanical dissipation described above. The temperature

variation in a solid due to adiabatic deformation is (Landau and Lifshitz, 1976a):

T −T0 =−
T0Kadα

ρCp
εkk, (2.28)

where T0 is the equilibrium temperature, εkk
1 is the dilatational strain (relative volume

change), Kad is the adiabatic bulk modulus, Cp is the specific heat at constant pressure

per unit mass, α is the thermal expansion coefficient at constant pressure, and ρ is

the density. Consequently, thermoelastic energy dissipation is a function of volumetric

1Einstein summation convention is used, i.e., εkk is the trace of the strain tensor (dilatational strain).
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change, εkk whereas the solid viscosity-related dissipation is due to the rate of change

of the strain tensor, ε̇i j. Even for a perfectly uniform Plexiglas sample of this study,

the associated heat should release into the environment during low-frequency cycling

of deformation.

According to Landau and Lifshitz (1976, pp. 157-159), there exist three end-

member regimes of thermal relaxation in polycrystalline (grainy) bodies:

i For very low frequencies ω� ϑ/a2 (where a is the size of the grain and ϑ is the

thermometric conductivity, defined as the ratio of the thermal conductivity κ to

some specific heat per unit volume C), the grains equilibrate within each period of

oscillation, and the oscillation occurs nearly isothermally. In this case, tanφ ∝ ω,

similarly to the case of regular linear viscosity (shown in section 3.1.1).

ii For frequencies ϑ/a2� ω� c/a (where c is the speed of sound in the medium),

equilibration takes place by means of “temperature waves” across the boundaries

of grains. This process is similar to the skin effect in electromagnetism, and the

corresponding tanφ ∝ 1/
√

ω.

iii At frequencies ω� c/a, wave processes take place within the grains and tanφ ∝ ω

again.

The above case of extremely high frequencies (iii) is irrelevant for the present problem

and so regimes (i) and (ii) will be considered below. As we will see, the transition from

ω to 1/
√

ω may represent the low- and high-frequency slopes of the observed absorp-

tion peaks. It appears that along with elastic scattering (Morozov, 2011), thermoelas-

ticity is the only mechanism that can provide phase lags decreasing with frequency.
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Chapter 3

Results

In this chapter, I summarize the results from anaytical and numerical simulations of

several types of phase-lag, resonance and creep experiments. Most of these simula-

tions were conducted for parameters approximating the measurements of mechanical

dissipation in an experiment with a Plexiglas cylinder by Tisato et al. (2010). Glassy

Plexiglas is a broadly available, inexpensive, relatively uniform and transparent mate-

rial, which makes a natural choice for testing ideas and devices for measuring anelastic

properties of solids. Its physical properties are well known and reproducible, although

somewhat variable by manufacturer. Polymers such as Plexiglas possess significant in-

ternal friction which can be reliably measured. Interestingly, the relatively large values

of phase lags corresponding to Q of ∼ 15− 50 reported in recent lab tests on mantle

olivine aggregates (Jackson et al., 2004; Faul et al., 2004) are similar to those measured

in polymers (Figure 3.1; Lakes, 2009), although their elastic moduli are of course much

larger1. Plexiglas also shows strong thermal expansion (Table 3.1) and spectral peaks in

dissipation (Figure 3.2). In terms of the models presented in this Thesis, this suggests

that thermoelastic effects may be significant when measuring mechanical dissipation in

Plexiglas.

1Note that it therefore appears that energy dissipation in olivine is much stronger than even in poly-
mers.
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Figure 3.1: Phase lags and empirical moduli for various materials (Lakes,
2009). Notice that polymers (including Plexiglas) have phase lags similar
to those of of olivine aggregates (Jackson and Paterson, 1993; Faul et al.,
2004).

Tisato et al. (2010) recently reported a new apparatus for axial phase-lag measure-

ments in comparatively large rock samples with variable fluid saturations. These au-

thors kindly provided their phase-lag data obtained during initial testing of this appara-

tus using Plexiglas cylinders (Figure 3.2).

For comparison, Figure 3.2 also shows earlier Plexiglas phase-lag and elastic-moduli

data from Lakes (2009), and (Figure 3.3) shows creep data for Plexiglas by McLough-

lin and Tobolsky (1952). So far, these data have been interpreted purely empirically,

as time and frequency variations of the viscoelastic moduli. In my modeling, I attempt

explaining these data from the physical viewpoints presented in section 1.2.3. Phase

lag and creep are simulated for both linear and non-linear rheologies. In addition,

resonance-type Q is also investigated.

Simulation parameters for the models in Figure 2.1 and 2.2 are shown in Table 3.1.

Sample dimensions are chosen to match the Plexiglas phase lag experiment by Tisato

et al. (2010). Moduli and the Poisson ratios for Plexiglas are taken from a Plexiglas

manufacturing company, ALTUGLAS (1987). Viscosity parameters in Table 3.1 cor-

respond to only one characteristic case of linear rheology (section 3.1.1). As discussed
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Figure 3.2: Experimental phase lag data for Plexiglas cylinders (Tisato
et al., 2010; Lakes, 2009).

Figure 3.3: Experimental creep data for Plexiglas with linear plastic flow
removed (McLoughlin and Tobolsky, 1952).
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Table 3.1: Input parameters for simulation (ALTUGLAS, 1987) in Figure
2.1 and 2.2. Parameters for anelasticity, η are given for linear rheology.

Standard (Aluminum) Sample (Plexiglas)
Parameter Value Parameter Value

H1 0.080m H2 0.250m
R1 0.033m R2 0.076m
ρ1 2700kg/m3 ρ2 1180kg/m3

ν1 0.334 ν2 0.35
µ1 26.0GPa µ2 1.15GPa
E1 70.0GPa E2 3.10GPa

ηE,1 0Pa · s ηE,2 2.02MPa · s
ηµ,1 0Pa · s ηµ,2 0.82MPa · s
ηK,1 0Pa · s ηK,2 0.54MPa · s

below, for non-linear rheologies and different levels of strains and strain rates, these

parameters may be strongly different. Generally, as the modeling below shows, non-

linear dissipation effects exhibit great variety in behaviours and values of parameters

and may sometimes look unusual. Nevertheless, as this study suggests, non-linear ef-

fects in dissipation are significant.

3.1 Modelling Using Linear Rheology

3.1.1 Sub-resonant forced oscillations

A simulation for both torsional- and longitudinal-deformation cases was carried out

using the parameter values in Table 3.1. In Tisato et al. (2010) and similar experi-

ments (Jackson and Paterson, 1993), the measured quantity is the phase lag between

the deformations of the sample (α2 in my notation) and standard (α1). This phase lag

is conventionally expressed through its tangent (Lakes, 2009). In our numerical exper-

iment, the key observed quantity therefore is:

tanφ = Arg
(

α2

α1

)
. (3.1)
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Figure 3.4: Tangents of phase lags for torsional and longitudinal deforma-
tions as functions of driving frequency, f . Asterisks (∗) indicate the resonant
frequencies.

Figure 3.4 shows the response of the phase lag between the sample and standard for a

broad range of driving frequencies from 1 Hz to 6 kHz. As I show below, for realistic

levels of dissipation within the specimen, the oscillations are over-damped, as it is likely

typical in similar measurements. Under such conditions, the phase lag increases close

to linearly below the fundamental-mode frequency of the system, after which it starts

decreasing (Figure 3.4).

The low-frequency limit is most important in practical measurements, as seismic

frequencies are far below the natural frequency. For example, in our 15-cm long Plex-

iglas example, the natural frequency is about 750 Hz for torsion, and in experiments

with smaller rock samples they are much higher. Given our general inverse problem

(2.9), and the expression for K−1 (2.11), the phase lag results for torsion and tension

are:

tanφcomp =
ηE

E
ω and tanφtors =

ηµ

µ
ω, (3.2)

where E is the Young’s modulus, ηE = ηK(1−2σ)2+4/3ηµ(1+σ)2 and σ is Poisson’s

ratio. The low-frequency linear trends shown by numerical simulations in Figure 3.4

are clearly shown in Figure 3.5. Notably, these phase lags for longitudinal deforma-
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Figure 3.5: The linearity of the low-frequency limit. The input parameters
are given in Table 3.1.

tions (eq. 3.2) are independent of the dimensions of the standard and rock specimen.

This makes these lags relatively reliable estimators of the intrinsic energy-dissipation

parameters of the rock. However, these phase lags also depend on the frequency of the

external force driving the oscillations. Thus, medium viscosity corresponds to the mag-

nitude of phase lags, whereas their frequency dependence is explained by the rheologic

exponent ν. In the present case of ν = 1, this frequency dependence is linear.

3.1.2 Forced oscillations near resonance

Another method of assessing the anelastic properties of a rock specimen is by mea-

suring the width of the resonance peak of the squared amplitude of deformation under

forced oscillation (∆ω in eq. (1.35) on page 25). A standard is not required to measure

resonant peaks, and for one cylinder, the equations simplify considerably. In the fol-

lowing, I will be specifically interested in the dependences of various quantities on the

solid viscosity and the length of the cylinder, H.

Kinetic energy, potential energy and dissipation functions for a single cylinder un-

dergoing tensional or torsional stress are given in Appendix A. For weak damping, the
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value of ω0 can be derived from the equipartioning of energy, which requires T =V :

ω0 =

√
E
I
. (3.3)

where E is the Young’s modulus and I is a mass parameter which can be found in Ap-

pendix A. An expression for ∆ω can be determined by solving for ω at half-maximum

of the power spectrum:

∆ω =
ηE

I
. (3.4)

Combining eqs. (3.3) and (3.4) gives an expression for the spectral quality factor:

Qspec =

√
IE

ηE
. (3.5)

Expressions for Qspec for both torsional and compressional modes are explicitly written

in terms of system parameters below:

Qspec,t =

√
1
3ρµ

ηµ
H and Qspec,c =

√
1
3ρ

(
1+ 3R2

2H2 σ2
)

E

ηE
H. (3.6)

Figure 3.6 illustrates the effect of varying the length of the sample on Qspec. Unlike for

the phase-lag Q at low frequencies, the length and radius of the cylindrical specimen

affects Qspec. For all experiments, spectral Q is: 1) nearly proportional to the length of

the body, 2) proportional to the square root of the respective (Young’s or shear) elastic

modulus and density, and 3) inversely proportional to the appropriate solid viscosity.

Additionally, for compressional experiments, an additional dependences on the radius,

sample length, Young’s modulus, and the Poisson’s ratio are present (eq. (3.5)).

3.1.3 Static creep

In creep experiments, a constant force is applied to the sample, and the resulting defor-

mation is measured as a function of time. The Lagrangian formulation above is equally
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Figure 3.6: Spectral Q simulations for various sample lengths show a lin-
ear relationship between spectral Q and sample length. The compressional
mode includes a very small non-linear term by virtue of the geometry.
ηE = 0.163MPa · s, ηµ = 0.072MPa · s.

applicable to this case, with the difference from the above phase-lag calculation being

in using a constant external force switching on at time t = 0. Also, creep experiments

do not require an elastic standard in series with the sample, and therefore the problem

can be considered with only one cylinder.

As shown in eqn. (2.11) using the matrix expressions for energies and dissipation

functions (Appendix A) for axial compression and extension of the cylinder, the equa-

tion of motion is:

Iα̈+ηE α̇+Eα = F̃ , (3.7)

where F̃ is the generalized force equal the Newtonian force applied to the end of the

cylinder divided by its volume: F̃ = F/(πR2H). Equation (3.7) is again the equation of

a linear, damped harmonic oscillator. For a constant force, the solution can be written

as:

α(t) =
F̃
ω2

0

1− e−βωt

coshωt +
1√

1− 1
β2

sinhωt

 , (3.8)

where ω0 =
√

E/I, β = ηE
2
√

EI
, ω = ω0

√
β2−1 and β > 1. This solution is appro-
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Figure 3.7: Linear creep response (eq. (3.8)). What appears to be high
velocity at t = 0 is in fact rapid acceleration shown on inset. In the linear
regime, the applied force only changes the magnitude of deformation, and
not the “relaxation time” of the curve.

priate for the case of high viscosity, which leads to an over damped (non-oscillatory)

behaviour. In the under-damped case, β < 1, and the hyperbolic functions in (3.8)

become ordinary trigonometric functions. The deformation history predicted by eq.

(3.8) is illustrated in Figure 3.7. Starting from the initial state of rest, the deformation

quickly accelerates within time τ1 ≈ ω−1 (Figure 3.7, inset), and then slowly deceler-

ates over “relaxation time” τ2 ≈ (bω)−1� τ1. The exponential relaxation part of this

dependence corresponds to the behaviour of the Kelvin-Voigt body (section 1.2.1). The

initial stage of fast acceleration is caused by the finite mass of the specimen (i.e., by its

natural oscillation) and has no analogues in the equivalent mechanical models of ma-

terials. Note that as mentioned in section 1.2.1, mechanical models assume massless

internal variables, and consequently their initial responses are instantaneous. However,

creep observations in the lab focus on relatively slow, quasi-static processes, and the

mass should not be a significant factor for their explanation.
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3.2 Modelling Using Non-Linear Rheology

Experimental results (such as Tisato et al., 2010) indicate that the simple Newtonian

(quadratic) viscosity is insufficient for explaining the observations. This was also noted

in constructing early mechanical models of seismic attenuation by Knopoff (1964). In

phase-lag measurements, near-constant dependences of tanφ on ω are usually found,

often decreasing with ω (Faul et al., 2004) and sometimes showing spectral peaks (Fig-

ure 3.2). In creep observations, a segment of fast, “instantaneous” deformation (often

referred to as “static” or “elastic”) is usually seen. This segment is only weakly ex-

pressed in the deformation of a Newtonian (Kelvin-Voigt) body (Figure 3.7). In the

following, I try achieving these effects by considering two new mechanisms of dissipa-

tion: 1) non-Newtonian viscous friction, and 2) thermoelastic effects. This requires a

non-linear treatment of dissipation and incorporation of thermodynamics.

3.2.1 Sub-resonant forced oscillations

The resultant phase lags from solving eqn. (2.26) with dissipation function (2.25) are

given by:

tanφ =
η

φ

eff
M

ω
2ν−1, (3.9)

where η
φ

eff is the phase-lag effective viscosity (see Appendix A for expressions for both

tensional and torsional cases) and M is the elastic modulus (Young’s for tension and

shear for torsion). The effective viscosity is an important quantity determined from the

approximate dissipation function in eq. (2.25) and is generally dependent on strain α.

The expression for phase-lag effective viscosity for a longitudinal system is as follows:

η
φ

eff =2να
2ν−2 〈cos2ν y

〉
ηnl,

where ηnl =
1

2ν−1

[
ηK(1−2σ)2ν +

2ν+1

3ν
(1+σ)2ν

]
.

(3.10)

In experiments with lab samples, the empirical frequency-dependent modulus G
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Figure 3.8: a) Phase-lag results for varying powers. Insets show the values
of power-law exponents ν. A power of 1.0 corresponds to linear “Newto-
nian” dissipation and tanφ is proportional to frequency. A power of ν = 0.5
corresponds to “dry friction” and tanφ for this ν is frequency-independent.
b) Frequency-dependent modulus G for varying ν.

is defined as the ratio of the magnitude of the stress to strain, G = |σ/ε| (for example,

Figure 3.1 from Lakes, 2009). This quantity can also be measured from tanφ as follows:

G = M
√

1+ tan2 φ = M

√√√√1+

(
η

φ

eff
M

ω2ν−1

)2

. (3.11)

For purely elastic materials with η
φ

eff = 0, G = M, and the measured stress to strain ra-

tio equals the frequency-indepenent elastic modulus. However, for anelastic materials,

the strain to stress ratio will generally be frequency dependent. Curves for tanφ and G

for my non-linear model with 0.5≤ ν≤ 1.0 are given in Figure 3.8. To facilitate their

comparison, viscosities η in this Figure were selected so that the “effective viscosity”

(Appendix A ) is the same at 1 Hz for all ν values. As Figure 3.8b shows, the depen-

dence of tanφ and G on frequency reduces for smaller ν. For “dry” friction (ν = 0.5),

the resulting phase lag and empirical modulus are constant with frequency.
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3.2.2 Forced oscillations near resonance

Similar to linear mechanical systems, systems with weak non-linear dissipation pro-

duce resonant peaks from which Q values can be measured. For a single-cylinder sys-

tem, the scalar equation of motion for the deformation of the cylinder, α, is similar to

(2.26):

α =
(
−ω

2T + iωD̃+V
)−1

F, (3.12)

where expressions for T ,D̃ and V are given in Appendix A. It is important to note that

the dissipation parameter, D̃, is determined by using the approximation in (2.25). The

quality factor of the resonance, Q, is determined as the ratio of resonance frequency

to peak width (1.35). The resonance frequency is the same as (2.10) (ω0 =
√

E/I),

whereas the peak width, ∆ω, is given by:

∆ω =
ηres

eff (ω0)

I
=

η
φ

effω
2ν−2
0

I
. (3.13)

Note that generally, ηres
eff is a function of ω. If we evaluate ηres

eff at ω0, the expression for

resonant Q becomes:

Q =
ω0

∆ω
=

Iω0

η
φ

effω
2ν−2
0

=
E

η
φ

eff

(
E
I

) 1−2ν

2

∝ α
2−2ν (3.14)

The non-linear rheology thus predicts a dependence of Q on strain amplitude, which is

absent for linear rheology (3.5).

However, the nature of the non-linear rheology amplitude spectrum is such that if

a suitable viscosity is selected, even for the same strain, the linear rheology amplitude

spectrum can be reproduced at least near the peak (Figure 3.9a). As shown in Figure

3.9b, the shape of the spectrum does indeed differ for non-linear rheology.

The effective non-linear viscosity ηeff (eq. 3.10) possesses a dependence on strain

amplitude, α, and therefore a series of experiments carried out at different deformation

amplitudes could give an insight into the behaviour of materials with such properties.
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Figure 3.9: a) Non-linear and linear rheologies producing similar amplitude
spectra near resonance. The non-linear rheology (ν = 0.55) has ηµ = 98 Pa ·
s while the linear rheology has ηµ = 4100Pa ·s. b) A log plot of spectra over
a larger frequency band to show the divergence away from the peak.

Figure 3.10 shows an example of the spectral Q in a dissipatively non-linear material

changing as a function of deformation amplitude. As the cylinder is driven by pro-

gressively stronger forces, the spectral quality factor increases due to a decrease in the

“effective” viscosity (ηφ

eff eq. 3.10). This increase in Q occurs despite the material

viscosities ηµ and ηK remaining constant.

At present, it is unclear how strongly the non-linear effects modeled above are rep-

resented in real materials. Some experiments, for example resonance curves in PVC

(Figure 1.19 section 1.4.4), show linearity in dissipation - as the driving force is in-

creased, the spectral Q remains constant. Interestingly, non-linearity of my model with

respect to strain amplitude can be easily removed from the above model while keep-

ing the non-linear dependence on strain rates. This modification is briefly described

in the Discussion. At he same time, experiments in sandstones (Figure 1.20) suggest

a non-linearity at deformations ∼ 10−6. Finally, it appears that the observed weak

frequency-independence of Q for body seismic waves can only be explained by non-

linear dissipation (Knopoff, 1964).
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Figure 3.10: Variation of attenuation with amplitude for non-linear solid
viscosity with ν = 0.55, ηµ = 200: a) Resonance peaks at different ampli-
tudes of driving forces (colours); b) Measured spectral Q’s as functions of
driving force. As ν approaches 1, the spectral Q becomes near-constant.

3.2.3 Static creep

For power-law rheology (3.7), the equation of motion is:

Iα̈+η
c
effα̇

2ν−1 +Eα = IF̃ , (3.15)

where ηc
eff is the effective viscosity for creep (eq. 2.20; table B.1). When ν = 1, this

is simply the equation of a damped, driven linear harmonic oscillator (3.7) in which

ηc
eff = ηE .

For a constant external force, the general equation of motion for a one-cylinder

system with power-law D (3.15) can be solved differently in two end-member cases.

Similarly to the case of linear creep (Figure 3.7), the system will quickly accelerate

from the state of rest, after which it will slowly deform quasi-statically. For the second

of these regimes, we can approximate the acceleration as negligibly small. Setting

α̈ = 0, equation (3.15) becomes a separable first-order equation:

dα

dt
=

[
I

ηc
eff

(
F̃
I
−ω

2
0α

)]κ

, (3.16)
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where κ = 1/(2ν−1), ω2
0 = E/I and F̃ = F/(πR2HI). This expression means that the

rate of residual deformation αR = F̃/ω2
0−α, is a power of the deformation itself:

α̇R =−
(

E
ηc

eff

)κ

α
κ
R. (3.17)

In lab measurements, the characteristic “relaxation time” is often measured by relating

the residual deformation to its rate of decrease: τR = −αR/α̇R (Chopra, 1997). In our

case, this ratio gives:

τR =

(
ηc

eff
E

)κ

α
1−κ

R . (3.18)

Thus, the characteristic relaxation time measured on a body with power-law solid vis-

cosity increases with increasing viscosity and also with strains approaching the equi-

librium level. For a fixed αR, (i.e., measuring the times of approaching a certain level

of deformation), the relaxation time is proportional to τR ∝
(
ηc

eff/E
)κ. Therefore, if we

want to maintain τR matching the observed relaxation times while varying ν, we need

to adjust the effective viscosity accordingly.

With an appropriate substitution, the full solution to (3.16) is:

α(t) =
F̃
ω2

0
−

[(
F̃
ω2

0

)1−κ

+

(
E

ηc
eff

)κ

(κ−1)t

] 1
1−κ

. (3.19)

This expression gives the asymptotic solution for long deformation times. For short

times, a solution of (3.15) can be obtained numerically. I used the 4th order Runge-

Kutta scheme (Butcher and Wiley, 2003) to provide the initial parts of the creep curves

and to measure the significance of the mass term Iα̈ (Figure 3.11).

Figure 3.11b shows that non-linear dissipation is capable of producing what appears

to be a near-instantaneous deformation followed by slow creep. For smaller ν values,

this separation into “fast” and “slow” deformations is much stronger than for linear

rheology (Figure 3.7). While the “fast” response is rigorously non-instantaneous, it

appears as such within typical observation time scales, which are often specified as the
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Figure 3.11: Model of creep with power-law dissipation with ν = 0.56
(Table 3.1): a) Comparison of the approximate analytical and Runge-Kutta
solutions on a log time scale. The effect of the mass occurs at very short time
scales (less than 10−5 minutes; green), after which the solution approaches
the analytical approximation (blue curve). b) On a linear time-scale plot,
the deformation appears to be a large “instantaneous” response followed by
a very slow creep towards stationary level.

times at which the deformation reaches some characteristic level (for example, 98%;

Chopra, 1997). At the same time, completely instantaneous “elastic” responses as-

sumed for equivalent models (e.g., Burgers body; section 1.2.1) are also impossible

because of the effects of finite mass in real media.

Figure 3.12 compares several non-linear creep curves having approximately the

same relaxation times (3.18) at 98% deformation. As we see, with increasing ν, the

initial fast stage of deformation takes longer times, because of increased effective vis-

cosity.

In Figure 3.13, the above relation for relaxation time (3.18) is illustrated numer-

ically. For different η and ν, colours in this plots show the times in which the de-

formation of the cylinder reaches 98% of its asymptotic (stationary) level. The range

of values shown (1 to 10 hours) corresponds to typical creep times measured in Earth

materials. Note that only a narrow range of ν from 0.58 to 0.66 is shown. Extending

this relationship to larger ν shows that in order to achieve characteristic times in the
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Figure 3.12: Creep curves for non-linear rheology. Inset shows the values
of ν. For each ν, ηc

eff is selected so that 98% of the stationary deformation is
reached in 10 hours (see table 3.2). Note that for ν= 0.52, the strain appears
to be almost constant after a large “instantaneous” jump.

Table 3.2: Non-linear rheology effective viscosities that lead to a 10-hr
relaxation time (Figure 3.12).

ν ηc
eff(Pa · s)

0.52 1.61×103

0.62 3.49×105

0.72 5.49×107

0.82 6.84×109

0.92 7.27×1011

0.99 2.73×1013
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Figure 3.13: Combinations of ν and ηeff that yield 98% relaxation rates
between 1 (blue) and 10 (red) hours.

∼1-hour range for near-Newtonian viscosity (ν ≈ 1), viscosity values around 9 orders

of magnitude higher (∼ 1013 Pa·s) would be required (Table 3.2). Such viscosities are

usually reported for Burgers’ models for rock specimens (Chopra, 1997).

3.3 Combined Viscosity and Thermoelastic Model

The non-linear rheology proposed in section 2.1.2 is unable to produce a phase-lag

decreasing with frequency; at best it can produce a phase lag that is constant with fre-

quency. However, phase-lag observations in materials (Tisato et al., 2010; Lakes, 2009;

Faul et al., 2004) often show phase lags decreasing with frequency. From section 2.3,

the only physical mechanism likely to produce phase lags decreasing with frequency is

thermoelasticity.2 Therefore, I try using a combination of non-linear rheology and ther-

moelasticity (section 2.3) to produce a model that accounts for these two major sources

2Another possible mechanism that could reduce Q−1 with frequency is scattering and variations of
geometric spreading (Morozov, 2008, 2010a, 2011f). However, this mechanism is unlikely significant for
lab samples and is generally subject to controversy (Morozov, 2009), and consequently not considered
here.
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Figure 3.14: Isolation of thermoelastic peak by removing non-linear viscos-
ity (ν = 0.5020, ηeff = 0.18GPa·s). a) log-log plot of the isolated thermoe-
lastic peak b) slope of a). The slope corresponds to the power of frequency.

of energy dissipation.

The final model form is proposed by phenomenologically combining the non-linear

viscosity and thermolelastic effects:

tanφ =
ηeff

M
ω

2ν−1 +

Aω for ω < ωpeak,

B√
ω

for ω > ωpeak,

(3.20)

where A and B are constants related to the thermoelastic effect. Note that for thermoe-

lasticity, we only have the asymptoptic behaviour of dissipation and consequently, there

is no rigorous theoretical model for the transition between “high” and “low” ω. It is

possible that the frequency range in the data from Tisato et al. (2010) lies entirely in a

transition between the two end-members of thermal relaxation: 1) tanφtherm ∝ ω and 2)

tanφtherm ∝ ω−0.5 (section 2.3).

Assuming that the asymptotic behaviour at low frequencies is linear with ω and

at high frequencies is proportional to ω−0.5, we can try describing it in between these

limits as A(p)ωp, where −0.5≤ p≤ 1. If we investigate the data in log-log scales, the

points in which the asymptotic regimes begin to dominate can be determined. Taking
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Figure 3.15: Required non-linear dissipation describing the data by Tisato
(2011) assuming an idealized thermoelastic peak in (3.20). The blue line
shows a power-law rheology with ν = 0.49. Middle frequencies were disre-
garded in this fitting because the behaviour of thermoelasticity at interme-
diate frequencies is uncertain.

the logarithm of recorded dissipation power, Figure 3.14b) shows the power of the ther-

moelastic peak varies from ∼0.4 to ∼-0.65. There seems to be “asymptotic” regions

at the low- and high-end of the frequency spectrum where the power flattens out. Of

course, this model is only empirical and approximate, and in reality, both the viscous

and thermoelastic effects differ from the idealized asymptotics considered above. Ac-

cording to the two thermoelastic end-member regimes (section 2.3), the asymptotic

powers should be 1 and -0.5 for low and high frequencies, respectively. This discrep-

ancy may be due to viscosity itself not behaving constantly over the entire frequency

range, i.e., the viscosity differing from the simple power law (2.27). This could poten-

tially explain the rise of dissipated power not being strong enough for the low frequen-

cies and the drop being too strong for the higher frequencies.

Thus, I propose that Plexiglas data by Tisato (2010) can be explained by a “back-

ground” non-linear rheology with a thermoelastic peak superimposed over it. From

the theory of the end-member regimes (section 2.3), a suitable paramter of ν of the

background rheology can be estimated. Once this background non-linear rheology is

removed, parameters of the remaining thermoelastic peak are constrained by consider-
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ing its asymptotic regimes.

If we consider the thermoelastic peak to be of the exact form shown in (3.20),

we can attribute the whole remaining frequency variation of dissipation to non-linear

viscous friction. Figure 3.15 shows the non-linear rheology required for this. Un-

fortunately, this dependence is only presented as an empirical variation of tanφ with

frequency, i.e. exactly as it is commonly done in the viscoelastic approach (section

1.2.4). According to the approach of this Thesis, tanφ(ω) is only an apparent quantity

requiring physical explanation in terms of physical properties, such as the non-linearity

of dissipation. Nevertheless, an appropriate function D(ε, ε̇) can apparently be con-

structed to reproduce this behaviour of tanφ(ω). I do not attempt this here because

the shape of the thermoelastic peak (3.20) used above is only a crude approximation.

This can especially be seen from the sharp apparent notch in tanφ near log(φ)≈−0.3

(Figure 3.15).
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Chapter 4

Discussion and Conclusions

In this chapter, I will outline the major findings of this thesis. Determining what prop-

erties of internal friction are intrinsic to the material and thus qualify as real physical

quantities will be discussed based on the frequency dependence of Q and sample di-

mension dependence of Q. Power-law rheology will be shown to be a physical model

that doesn’t rely on the existence of hidden variables capable of producing the observed

features of anelastic creep or frequency dependent phase-lags.

Finally, I will discuss the findings related to thermoelasticity emphasizing that it

can both be an artifact of experimental design and intrinsic to the material, although

not purely mechanical in nature.

4.1 Frequency Dependence of Q

In the viscoelastic model, the shapes of the tanφ curves shown in Figure 3.2 (on page

54) (Lakes, 2009; Tisato et al., 2010) are explained empirically by a frequency depen-

dence of the material’s Q (Jackson and Paterson, 1993; Lakes, 2009). We are interested

in determining viscous parameters that are intrinsic to the specimen, that is independent

of sample dimensions and frequency of oscillation much the same as the elastic mod-

ulus, Poisson ratio and density. While the apparent Q is clearly frequency dependent

(Figure 3.2) - it is not an intrinsic property of the specimen. However, the above results
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(section 3.1.2) indicate that for our “linear” rheology (2.5), phase-lags (3.2) or Q−1

(1.37) should increase linearly with frequency within the seismic band. It appears that

not the phase lags themselves but rather their derivatives with respect to ω represent the

stable and important intrinsic parameters of the specimen. In our interpretation, these

parameters are the ratios of solid viscosities to the corresponding elastic moduli.

Figure 3.5 shows the linearity of tanφ(ω) with respect to f for low frequencies.

Let us assume that the slopes m = d tanφ/d f in such plots are measured for the same

specimen and try deriving the solid viscosities from them. From eq. (3.2), these slopes

equal:

mtors = 2π
ηµ

µ
and mcomp = 2π

ηE

E
. (4.1)

The subscripts “2” were dropped here, as it is understood that the moduli and viscosities

above are those of the sample and not the standard. If the bulk viscosity parameter

ηK = 0, the ratio of these slopes β = mtors/mcomp should only depend on the Poisson’s

ratio of the specimen, σ:

βηK=0 =
3

2(1+σ)
. (4.2)

Note that β ≥ 1. In the general case of ηK 6= 0, because the slopes mtors and mcomp

linearly depend on ηK and ηµ, the solid viscosity parameters can be inverted from the

observed mtors and mcomp as:

ηµ =
µ

2π
mtors and ηK =

E
2π(1−2σ)2

[
mcomp−

2
3
(1+σ)mtors

]
. (4.3)

Thus, the combination of torsional- and longitudinal testing results yields a way for

determining both parameters of solid viscosity experimentally. First, ηµ can be deter-

mined directly from the slope of the torsional Q−1
phase vs. f plot, and then ηK can be

determined through eq. (4.3).

For non-linear power rheology (2.27), phase lags are no longer necessarily linear

with frequency and range from ω0 to ω1.0. The intrinsic property once again is not

the quality factor, Q but the viscosity parameters, ηµ and ηK as well as the the power
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parameter, ν. The power parameter ν gives the most insight into the nature of the

viscous process that a specimen possesses while the viscous parameter η would indicate

the amount of that process. These parameters can be determined in much the same way

as linear parameters. However, the frequency-invariant quantities will be derivatives

with respect to ω2ν̃−1 as opposed to ω in the linear case:

d tanφ

dω2ν̃−1 =
η

φ

eff
M

dω2ν−1

dω2ν̃−1 . (4.4)

If ν̃ = ν, then d tanφ/dω2ν̃−1 should be constant with frequency and equal to the ratio

of effective viscosity to elastic modulus. The effective viscosity can then be inverted

for the intrinsic parameters ηµ and ηK . Note that in the case of torsional experiments,

η
φ

eff depends on sample dimensions (Appendix A).

4.2 Dependence on sample dimensions and experimental geometry

Our results show that dependences on sample dimensions arise in formulations of Q for

resonance experiments. This is natural, as the spectral quality factor Qspec depends on

the resonant frequency of the specimen. The resonant frequency is highly dependent

on the length of the specimen - longer specimens will have lower resonant frequencies

and vice versa. The result is that spectral Q is nearly proportional to the length of the

specimen. Because of this, Qspec does not represent a direct measure of a property of

the material.

Although this appears less practical for actual measurements, it is straightforward

to show that slopes mtors = dQspec,t/dH and mcomp = dQspec,c/dH can also be used for

inverting for both of the viscosity constants ηK and ηµ:

ηµ =

√
1
3ρµ

mtors
and ηK =

mtors
mcomp

√
2(1+σ)

(
1+ 3R2

2H2 σ2
)
− 4

3(1+σ)2

(1−2σ)2 . (4.5)

Notice that ηK in eq. (4.5), also depends on sample dimensions - namely, the aspect
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ratio R/H. This dependence comes from longitudinal experiments only, and enters via

the “mass” parameter, I:

I =
ρH2

3

[
1+

3
2

(
R
H

σ

)2
]
≈ ρH2

3
, for long thin cylinders. (4.6)

The quantity R/H is the aspect ratio and is small long thin cylinders (rods). Along with

it being multiplied by the Poisson’s ratio (σ, a quantity less than 1) and then squared,

the effect of sample dimension is relatively weak.

For non-linear rheology, there also exists a dependence of spectral Q on sample

dimensions. Linear rheology showed that spectral Q was linearly dependent on sample

length, H but this dependence is generalized for non-linear rheology to Qspec ∝ H2ν−1:

dQspec

dH2ν−1 =
E

η
φ

eff

E
1−2ν

2

{
ρ

3

[
1+

3
2

(
R
H

σ

)2
]} 2ν−1

2

. (4.7)

The derivative will be near constant with sample length and equal to the ratio of elastic

modulus to effective viscosity as well as an additional dependence on elastic modulus

and density which vanish for near “dry” friction (ν≈ 0.5). The effective viscosity can

then be inverted for intrinsic parameters ηµ and ηK . Note that for torsional experiments,

η
φ

eff also has a small dependence on sample dimensions (Appendix A).

4.3 The Nature of Non-Linear Rheologic Creep

As was shown in Figure 3.7 on page 60, creep curves for linear rheology produce

no “instantaneous” deformation which is typically observed in experiments. Such in-

stantaneous deformation is often modelled using massless mechanical models such as

Burgers’ and SAS (section 1.2.1). While non-linear rheology, strictly speaking, also

produces no instantaneous response, it is nevertheless capable of showing a very rapid

response followed by slow creep towards the equilibrium level (Figure 3.12).

Figure 4.1 shows a comparison of non-linear creep with one of Burger’s model
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Figure 4.1: Non-linear creep approximating the anelastic part of Burgers’
model for Aheim dunite (Chopra, 1997). Non-linear model parameters are
ν = 0.79, ηµ = 2.4 GPa·s, and the Burger’s model parameters are: shear
modulus µ = 15.75 GPa and viscosity η = 2040 GPa·s.

for Aheim dunite by Chopra (1997) (Figure 1.14 in section 1.4.1). For this compari-

son, I removed the steady-state plastic response from Chopra’s (1997) solution, thereby

reducing the Burgers’ body to a SAS body (section 1.2.1). It is clear that non-linear dis-

sipation shows deformations close to the anelastic portion of Burger’s models as well

as near-instantaneous deformations. In this case, because the anelastic part of sample

response is large compared to its “instantaneous” part, and the best-matching value of ν

is larger (0.79). Because this value is still significantly below one, the non-linear solid

viscosity parameter ηµ = 2.4 GPa·s is much lower than the Burger’s anelastic element

η = 2040 GPa·s inverted by Chopra (1997).

Finally, I tried explaining the available creep data in Plexiglas (McLoughlin and

Tobolsky, 1952; Figure 4.2) by using the non-linear dissipation model (Figure 3.12).

In these data, there also appears to be a clear stationary flow at large times, which was

removed assuming a constant plastic flow rate. The corrected experimental points (red

dots in Figure 4.2) should therefore approximate only of the completely recoverable

anelastic portion of deformation. Again, a reasonably good fit to these data can be ob-

tained by using a near-dry internal friction of ν = 0.5023 and solid viscosity of η = 101
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Figure 4.2: Experimental creep data for Plexiglas (red dots; McLoughlin
and Tobolsky, 1952) fit by a non-linear rheology model (ν = 0.5023, ηµ =
101 GPa·s): a) Using a linear time axis while b) Using logarithmic time
axis.

GPa·s. It appears that these data could also be fit with a Burgers’ model with relaxation

time of about 20-25 min, as in Figure 4.1. Note that plotting in logarithmic time scale

suggests a relative acceleration of deformation after about ∼20 minutes (Figure 4.2b).

This means that the deformation actually occurs somewhat faster than in our power-

law relation (eq. 3.18). Two explanations can be suggested for this discrepancy: 1) the

non-linear dissipation function in Plexiglas is not exactly power-law, and 2) unrecover-

able changes, such as plastic flow, occur within the material, taking this case out of the

scope of the purely anelastic model. Both of these reasons are likely to be the cause for

creep measurements in Plexiglas, as well as in other materials.

4.4 Mechanisms of Thermoelasticty

The interpretation of the thermoelastic effect in section 3.3 was principally based on

the observation that thermoelasticity is one of the most likely mechanisms explain-

ing absorption peaks in the data. With increasing frequencies, the behaviour of ther-

moelastic dissipation changes from quickly increasing with frequency (similar to near-
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Newtonian viscosity) to much slower increase when “temperature waves” develop near

grain boundaries (section 2.3). Thus, “grain size”, h is the critical parameter controlling

the frequency of thermoelastic dissipation peak.

The numerical value for h allows differentiating between the potential causes off

thermoelastic losses. If h turns out comparable to the characteristic dimensions of the

specimen and measurement device (several centimetres and larger), then it is likely

that thermoelastic effects occur, for example, on the contacts of the specimen with the

mounting harness and other parts of the apparatus. In contrast, if the frequency of

the peak is higher and leads to h much smaller than dimensions of the apparatus, it is

likely that thermoelastic effects occur on the internal structure of the material (in this

case, more likely of the sample). It is of course also possible that even with small h,

thermoelastic dissipation occurs within thin zones where the specimen is in contact with

the surrounding environment; however, the magnitude of such thermoelastic dissipation

should likely be weak. Thus, it is important to estimate the value of grain size from the

observed frequency of the peak.

The grain size can be estimated from the observed frequency of the peak in tanφ as

follows (Morozov, 2012b). Consider the low-frequency limit ω� ϑ/h2 first, where ϑ

is the thermometric conductivity. At low frequencies, the entire grain volume partici-

pates in heat transfer, and the temperature T ′ within the grain is approximately spatially

uniform. For a harmonic deformation in time (∆ ∝ cos(ωt)) the average heat production

rate by deformation per unit volume equals Ṫ ′0CV −ωT ′0CV , where the adiabatic temper-

ature perturbation due to dilatational deformation ∆ is (Landau and Lifshitz, 1976a):

T ′0 =−T KAα

ρCp
∆. (4.8)

The heat dissipated by conduction equals divq = κ∆T ′ ≈ κT ′/h2. By equating these

two quantities, Morozov (2012b) showed that the temperature variation is proportional

to frequency and strain:

T ′ ≈ T ′0ω
h2

ϑ
. (4.9)
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and the energy dissipation rate behaves as Newtonian viscosity:

− Ėmech = ηthermoV ∆
2
ω

2, (4.10)

where V is the volume of the body, and the effective viscosity equals:

ηthermo =
κ

T

(
T ′0h
ϑ∆

)2

=
T
κ

K2
Aα

2h2. (4.11)

For polycrystalline metals, Landau and Lifshitz (1976a) point out that this quantity is

much larger than the viscosity of the grains. Note that this viscosity quickly increases

with grain size. The corresponding phase lag is:

tanφ =
ηthermo

K
ω. (4.12)

For “fine-grained” Plexiglas at room temperature, the effective low-frequency thermoe-

lastic viscosity is low and close to the observed level (tanφ≈ 0.01 at ∼ 1 Hz).

At intermediate frequencies (ϑ/h2� ω� c/h), mechanical-energy dissipation oc-

curs within layers of thickness δ ≈
√

ϑ/ω near structural contrasts and boundaries.

Taking this value as comparable to the characteristic dimension of the problem, we

can estimate (Morozov, 2012b): ω0 ≈ ϑ/h2 for dissipation in a medium with spherical

heterogeneities of radius h and ω0 ≈ ϑ/R2 for thermoelastic dissipation in a uniform

cylindrical specimen of radius R. The corresponding phase lags are (ibid):

tanφ≈ 6
ωhδ

κT α2K

(ρCp)
2 for grainy cylinder, (4.13)

tanφ≈ 2
ωRδ

κT α2K

(ρCp)
2 for uniform cylinder. (4.14)

For a given the frequency of the dissipation peak, ω0, the corresponding grain size

(or cylinder radius) can be estimated by making the above low-frequency and high-

frequency expressions meet at ω0. Although none of these equations are valid in the
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vicinity of point ω = ω0, this extrapolation seems to produce reasonable estimates, and

it also creates a continuous tanφ(ω) curve. Equating (4.12) and (4.14) at frequency ω0,

we obtain:

h =
1
√

ω0

[
6κ2

√
ϑ(ρCp)

2

]1/3

. (4.15)

For polycrystalline olivine at mantle conditions, Morozov (ibid) estimated h≈ 16 mm.

Note that this is close to the grain size expected within the upper mantle (Karato and

Wu, 1993). For a ∼ 2.5 Hz spectral peak in Plexiglas at ambient conditions, the same

estimate gives h≈ 0.15 mm. This grain size appears to be probable in the experiment.

Such small value of h suggests that the thermoelastic effect is caused the graininess of

the material and not by the effects related to the edges and dimensions of the specimen.

At the same time, note that the above estimates are only of order-of-magnitude charac-

ter, and the actual values of h and the shape of the thermoelastic peak may be somewhat

different.

The grain size, h, is also known to be the critical parameter determining the strength

and frequency dependence of scattering (Aki and Chouet, 1975). For waves, scattering

occurs in distinctly different regimes characterized by the product hk, where k =ω/V is

the wavenumber, and V is the wave speed within the medium. For hk� 0.01, the wave

experiences virtually no scattering, for hk� 0.1, the medium possesses an apparent

Q and (potentially) anisotropy (Rayleigh scattering), and for hk ∼ 0.1-10, scattering is

dominant and highly non-uniform (Mie scattering). For the sub-millimeter grain size

inferred above and seismic frequencies of 0.1-10 Hz, and V ≈ 6000 m/s, hk ≈ 10−7-

10−5, which is very low. Thus, scattering on material grains is hardly significant, but

some contribution from it can likely be incorporated in the effective viscosity. By com-

parison, “scattering” on the boundaries of the whole apparatus (e.g., h ≈ 0.1 m) sug-

gests hk≈ 10−5-10−3, which is also small but closer to the detectable Rayleigh regime.

However, such “scattering” on the boundaries of the experimental apparatus is inher-

ently included in my model in the form of accounting for the shapes and dimensions of

the cylinders. For these reasons, as mentioned above, scattering was not considered in
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this study separately from the viscosity and thermoelastic mechanisms.

4.5 Summary of Key Results

In this Thesis, I attempted applying a conceptually novel model of material anelasticity

to describe creep and seismic attenuation measurements in the lab. Instead of the tra-

ditional viscoelastic, Q-based model, several key observations were reconsidered from

the viewpoint of classical mechanics of continuous media described by Landau and

Lifshitz (1976). The most important findings from this thesis are as follows:

1. Classical continuum mechanics with dissipation both qualitatively and quantita-

tively describes the observed phenomena. It also explains the physical nature of

“material memory” and equivalent mechanical models which are often used for

describing seismic attenuation measurements in the lab;

2. Power-law solid viscosity (rheology) can produce near-constant “strain-stress”

phase lags.

3. Thermoelasticity represents a mechanism capable of producing both phase lags

decreasing with frequency and absorption peaks.

4. The combination of thermoelasticity and power-law rheology may be able to ex-

plain recent phase-lag measurements in Plexiglas (Tisato et al., 2010). The dissi-

pation peak is explained by thermoelastic effects on the ∼0.15-mm granularity.

5. Power-law rheology is capable of producing “near-instantaneous” deformation

followed by anelastic creep in creep experiments. Modeling experimental data

in Plexiglas by Tisato (2010) suggests a “near-dry” friction within the material,

which rheological exponent ν≈ 0.56. Similar frictional regimes appear to oper-

ate within the Earth.

6. Several types of Q values (phase-lag, spectral) were identified in different types

of experiments and related to the intrinsic material properties, and also shapes
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and dimensions of the specimens.

7. The quality factor inferred from phase-lag measurements is intrinsically fre-

quency dependent and therefore is not a good candidate for an intrinsic material

property.

8. The quality factor inferred from spectral measurements is also fundamentally

dependent on the length and other dimensions of the sample and therefore is not

a good candidate for an intrinsic material property.

9. Within the theoretical model considered here, intrinsic material properties re-

lated to viscosity are viscous parameter η and viscous power ν. The goal of

experiments measuring the attenuation properties of materials should be the de-

termination of these parameters. This task can be substantially more difficult

than attributing a phenomenological frequency-dependent Q to the material. For

example, for linear dissipation, ηµ and ηK can be inverted from the slopes of the

phase-lag dependences on frequency.

4.6 Conclusions

The general conclusion illustrated by a number of models of this study is that clas-

sical continuum mechanics with dissipation allows us to describe the observed creep

and phase-lag attenuation effects in solids. Both time-domain and frequency-domain

observations are described in terms of four groups of physical processes: 1) solid vis-

cous friction (rheology), 2) thermoelasticity, 3) kinetic transformations, and 4) geo-

metric spreading and scattering. Only the first two of these types of processes were

considered in this Thesis and found adequate for describing the available observations.

The frequency-dependent Q or time-dependent moduli, compliances, or creep functions

which are often used to describe such observations may be empirical characteristics re-

flection not only the properties of the materials but, for example, dimensions and shapes

of the samples.
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The theoretical paradigm employed in this study is strongly different from the con-

ventional, Q-based (often called “viscoelastic”) model. Instead of a single, but ar-

bitrarily frequency-dependent Q which is specialized for describing relaxation only,

a number of more general, physical parameters are attributed to the corresponding

energy-dissipation mechanisms (such as viscosity or thermoelasticity). The model is

thus based on first physical principles and focuses on inverting for the intrinsic (time-

and frequency-independent) properties of the material.

In the approach presented here, the observed frequency-dependent Q’s or time-

dependent creep (“memory”) functions are generally explained by the non-linearity of

solid viscosity, which can be described by selecting the Lagrangian dissipation func-

tion. This fundamental conclusion was suggested as long ago as by Knopoff (1964)

but appeared to be little developed since. I only considered a specific, power-law form

of this function, and showed that it is consistent with the strain-rate dependence of

effective viscosity used in geodynamics. The selected type of nonlinearity also allows

prediction of the key observations in both time- and frequency-domain experiments and

to propose methods for inverting for the in situ dissipation properties of materials.

4.7 Future Research

This Thesis focused on establishing a first-principle approach to interpreting seismic

attenuation observations in the lab, and as such, it probably elucidated more ques-

tions than provided definite answers. The experimental environments considered above

(Figures 2.1 and 2.2) were quite simplified, whereas the results often suggested that the

details of these environments should be significant for understanding the results.

As mentioned in Conclusions, non-linearity of the dissipation function is the key

to understanding the time- and frequency dependence of the quantities observed in

seismic-attenuation experiments in the lab. This Thesis focused on exploring only a

specific form of this dependence, which is the power-law Lagrangian dissipation func-

tion (2.18). This form assumed that the dissipation non-linearly depends on the strain
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rate, ε̇, but not on the strain itself (ε). This was only the simplest, “minimal” assumption

which reflected the principal observation of effective viscosity depending on strain rates

(2.20). However, this form of dissipation function also implies that the same power-law

dependence applies to the dependence of dissipation on strain levels.

The dependence of viscous dissipation on strain levels is poorly studied experimen-

tally and for simplicity, it was not explored in this Thesis. However, the non-linearity of

dissipation with respect to strain levels does not have to be dictated by the non-linearity

in strain rate. A natural and interesting extension of the dissipation function (2.18)

arises from our approach:

Dnl =
∫

V

[
ηK

τ2
K

(
τ

2
K

∆̇2

2

)νK

∆
2ξK +

2ηµ

τ2
µ

(
τ

2
µ

˙̃εi j ˙̃εi j

2

)νµ

(ε̃kl ε̃kl)
ξµ

]
dV. (4.16)

With such a dissipation function, frequency dependences of tanφ in forced-oscillation

experiments should be the same as described above, but the dependences on strain lev-

els would be proportional to ε2(ν+ξ) for each of the two modes of deformation (torsional

and longitudinal). In particular, for ν+ ξ = 1, the dissipation should behave linearly

with respect to the strain level. From seismic observations, this behaviour appears to be

intuitively preferable, and the condition ν+ξ≈ 1 also appears to be satisfied in a recent

model applying this dissipation function to the free oscillations of the Earth (Morozov,

2010c and 2011d).

Thus, one line of further research would consist of extending all of the results of

this Thesis to dissipation of the form (4.16). This could be a very significant under-

taking, which would require investigating the dependence of behaviour of mechanical

systems on additional parameters ξ and also producing reliable experimental data on

strain dependence.

Another improvement of the models discussed above should come from more ac-

curate models of the granularity of the material, shape of the specimens, and other

details of experimental environments. As suggested in section 3.3, by relaxing the intu-

itive constraint ν≥ 0.5 and by deviating from the pure power-law dissipation function
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(2.18), a better fit to the experimental data can be achieved. However, simultaneously,

a more accurate model of the thermoelastic peak would be required. Developing such

models could require much additional research.

Another major question mentioned but not resolved in this Thesis relates to the rel-

ative levels of the bulk and deviatoric viscosity parameters (ηK and ηµ, respectively in

eq. 4.1). As mentioned in section 4.1, I mostly used a simple approximation ηK = 0

inspired by an analogy with viscoelasticity. However, as recent studies show (Morozov,

2012b), this analogy may in fact be insufficiently rigorous and lead to rather peculiar

theoretic consequences. This problem, however, also applies to the viscoelasticity itself

(ibid). As Morozov (2012b) suggested, a theoretically more “natural” ad hoc approxi-

mation in the absence of adequate data could be ηK = 2ηµ/3. This approximation will

also need to be explored in the context of experiments modelled in this Thesis.

Finally, the ultimate goal of this study (as well of the experiments with Plexiglas

by Tisato et al. (2010) is in applying the resulting techniques to measuring seismic at-

tenuation in rocks. Unfortunately, again, the results if this Thesis show that the models

need to be developed specifically for each type of observations. For example, the rel-

ative roles of thermoelastic effects and viscosity in a large Plexiglas sample could be

quite different from those in small samples of olivine aggregates on which mantle-rock

attenuation is often studied. Also, extremely strong temperature gradients in high-

temperature experiments (such as by Jackson and Paterson, 1993) may create strong

thermoelastic pre-stressing and even fracturing of the specimens, which could cause

major complications in interpreting the results from first principles. Thus, significant

work taking into account the specifics of high-pressure, high-temperature experiments

with highly heterogeneous, small, and complexly-shaped specimens is still required

in order to be able to apply the above results to observations with mantle and deep

crustal rock samples. Most importantly, such studies should be based on the physical

principles explored in this Thesis.
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Appendix A

Reduction of the Problem to Discrete

Form

In this Appendix, I derive the matrix forms of the Lagrangian and dissipation function

for the two-cylinder tensional- and torsional-deformation cases as well as the equation

of motion for single-cylinder creep and resonance. In both cases, a simple approxi-

mation is taken, in which both the specimen and the standard deform uniformly, and

therefore the deformation of each of these bodies is described by a single parameter.

This approximation was also used in interpreting experimental data (Faul et al., 2004;

Tisato et al., 2010; Lakes, 2009; McLoughlin and Tobolsky, 1952). Rigorously, it is

only suitable for the low-frequency limit; however, this limit is of the most practical

value.

A.1 Longitudinal Deformation

In the case of tension, the force is applied to the top of the sample along the longitudinal

axis. Relative extensions in the z-direction are denoted α1 = ∆H1/H1 for the standard

and α2 = ∆H2/H2 for the sample.

Compression in the z-direction will result in expansion in the r-direction. This

expansion is governed by the Poisson’s ratio (σ) of the material. Displacements of any
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Figure A.1: Schematic for measuring longitudinal phase lags.

point in the system can be written as follows:

~u1 = (α1z) ẑ− (α1σ1r) r̂, ~u2 = (α1H1 +α2z) ẑ− (α2σ2r) r̂, (A.1)

where the symbols with hats indicate unit vectors in the corresponding directions.

The strain matrices for each cylinder can be determined from the displacements:

εn =


−σnαn 0 0

0 −σnαn 0

0 0 αn

 , (A.2)

where n equals 1 for the standard and 2 for the sample. Notice that there is no shear

contribution to strain in the longitudinal case.

The next step is to use the displacements and strains to determine the system’s

Lagrangian. Kinetic and potential energies as well as linear and non-linear dissipation

functions of an anelastic body are:

〈α̇|T|α̇〉=
∫

V

ρ

2
u̇iu̇idV, (A.3)

〈α|V|α〉=
∫

V

(
1
2

Kε
2
kk +µε̃i jε̃i j

)
dV,

〈α̇|D|α̇〉=
∫

V

(
1
2

ηK ε̇
2
kk +ηµ ˙̃εi j ˙̃εi j

)
dV,
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α̇
ν
i Dnl

i j α̇
ν
j =

∫
V

[
ηK

τ2
K

(
τ

2
K

∆̇2

2

)ν

+
2ηµ

τ2
µ

(
τ

2
µ

˙̃εi j ˙̃εi j

2

)ν
]

dV.

Above, εkk is the dilatational strain (trace of strain tensor) and ε̃ is deviatoric strain. By

taking the integrals in (A.3), the resulting matrices become:

T =
π

2

I1H1R2
1 +ρ2H2

1 H2R2
2

1
2ρ2H1H2

2 R2
2

1
2ρ2H1H2

2 R2
2 I2H2R2

2

 , (A.4)

V =
π

2

E1H1R2
1 0

0 E2H2R2
2

 ,

D =
π

2

ηE1H1R2
1 0

0 ηE2H2R2
2

 ,

Dnl =
π

2

ηnl1H1R2
1 0

0 ηnl2H2R2
2

 .

Simplifying these expressions to the single-cylinder case (for resonance and creep) can

be done by just taking the 2nd row 2nd column element of each matrix:

T =
π

2
R2HIα̇

2, V =
π

2
R2HEα

2, (A.5)

D =
π

2
R2HηE α̇

2, Dnl =
π

2
R2Hηnlα̇

2ν.

Inserting these expressions into the Euler-Lagrange equations (1.13) yields the follow-

ing equations of motion:

πR2HIα̈+πR2HηE α̇+πR2HEα = F(t). (A.6)

Finally:

Iα̈+ηE α̇+Eα = F̃(t), F̃(t) =
F(t)

πR2H
. (A.7)
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Figure A.2: Schematic for measuring torsional phase lags.

The same process can be done for the non-linear dissipation function yielding:

Iα̈+η
c
effα̇

2ν−1 +Eα = F̃(t), η
c
eff = νηnl. (A.8)

A.2 Torsional Deformation

In the case of torsional force, the sample is twisted at the top while the base of the

standard is fastened. For twisting, I select the dimensionless generalized variables as

α1 = θ1 for the standard and α2 = θ2 for the sample.

Twisting in the θ-direction will not result in any change in the r- or z-directions.

Displacements of any point in the system can be written as follows:

~u1 =

(
zr
H1

α1

)
θ̂, ~u2 =

(
rα1 +

zr
H2

α2

)
θ̂. (A.9)

The strain matrices for each cylinder can be determined from the displacements:

εn =


0 0 0

0 0 r
2Hn

αn

0 r
2Hn

αn 0

 , (A.10)

where n equals 1 for the standard and 2 for the sample. Notice that there is no di-

latational contribution to strain, which means that the strain is purely shear in nature.
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Similar to the longitudinal case, the evaluation of integrals (A.3) leads to the matrices

of the kinetic and potential energies (T and V), as well as linear dissipation (D) and

non-linear dissipation (Dnl) and are given by:

T =
π

4

 I1R4
1

H1
+

3I2R4
2

H2

3I2R4
2

2H2
3I2R4

2
2H2

I2R4
2

H2

 , (A.11)

V =
π

4

µ1R4
1

H1
0

0 µ2R4
2

H2

 ,

D =
π

4

ηµ1R4
1

H1
0

0 ηµ2R4
2

H2

 ,

Dnl =
π

4

ηnl1R4
1

H1
0

0 ηnl2R4
2

H2

 .

Simplifying these expressions to the single cylinder case can be done by just taking the

2nd row 2nd column element of each matrix:

T =
π

4
R4

H
Iα̇

2, V =
π

4
R4

H
µα

2, (A.12)

D =
π

4
R4

H
ηµα̇

2, Dnl =
π

4
R4

H
ηnlα̇

2ν.

Inserting these expressions into the Euler-Lagrange equations (1.13) yields the follow-

ing equations of motion:

π

2
R4

H
Iα̈+

π

2
R4

H
ηµα̇+

π

2
R4

H
µα = F(t). (A.13)

Finally:

Iα̈+ηµα̇+µα = F̃(t), F̃(t) =
2HF(t)

πR4 . (A.14)
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The same process can be done for the non-linear dissipation function yielding:

Iα̈+η
c
effα̇

2ν−1 +µα = F̃(t), η
c
eff = νηnl. (A.15)
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Appendix B

Parameter Summaries for Non-linear

Rheology

In this section, I summarize the variables used in phase lag, resonance and creep ex-

periments for both longitudinal and torsional deformations. I also summarize various

thermal properties of several Earth materials and Plexiglas.
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Table B.1: Parameter summary for time domain (creep) problem.

Longitudinal Torsional

Equation of

motion

Iα̈+η
c
effα̇

2ν−1 +Mα = F̃

I ρH2

3

[
1+

3
2

(
R
H

σ

)2
]

ρH2

3

η
c
eff

ν

2ν−1

[
ηK (1−2σ)2ν +

2ν+1

3ν
ηµ (1+σ)2ν

]
νηµ

22ν−2 (ν+1)

(
R
H

)2(ν−1)

M E µ

F̃ F(t)
πR2H

2HF(t)
πR4
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Table B.2: Parameter summary for frequency domain (two-cylinder phase
lag) problem.

Longitudinal Torsional

Equation of

motion

~α =
(
−ω

2T+ iω2ν−1D̃+V
)−1 ~F

T π

2

(
I1H1R2

1 +ρ2H2
1 H2R2

2
1
2 ρ2H1H2

2 R2
2

1
2 ρ2H1H2

2 R2
2 I2H2R2

2

)
π

4

(
I1R4

1
H1

+
3I2R4

2
H2

3I2R4
2

2H2
3I2R4

2
2H2

I2R4
2

H2

)

D̃ π

2

(
η

φ

e f f 1H1R2
1 0

0 η
φ

e f f 2H2R2
2

)
π

4

(
ηµ1R4

1
H1

0

0 ηµ2R4
2

H2

)

V π

2

(
E1H1R2

1 0
0 E2H2R2

2

)
π

4

(
µ1R4

1
H1

0

0 µ2R4
2

H2

)

η
φ

eff 2να
2ν−2〈cos2ν y〉ηnl

ηnl
1

2ν−1

[
ηK (1−2σ)2ν +

2ν+1

3ν
ηµ (1+σ)2ν

]
ηµ

22ν−2 (ν+1)

(
R
H

)2(ν−1)
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Table B.3: Parameter summary for frequency domain (single-cylinder res-
onance) problem.

Longitudinal Torsional

Equation of

motion

α =
(
−ω

2T + iωD̃+V
)−1

F

T
π

2
R2HI π

4
R4I
H

D̃
π

2
R2Hη

res
eff

π

4
R4ηres

eff
H

V
π

2
R2HE π

4
R4µ
H

η
res
eff 2ν(αω)2ν−2 〈cos2ν y〉ηnl

ηnl
1

2ν−1

[
ηK (1−2σ)2ν +

2ν+1

3ν
ηµ (1+σ)2ν

]
ηµ

22ν−2 (ν+1)

(
R
H

)2(ν−1)
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Table B.4: Thermal properties of several Earth materials and Plexiglas

Material κ, W/m/K
α, K (at room
temperature)

ρ kg/m3 Cp J/K/kg K, GPa ** µ, GPa
∆K (bulk mod-
ulus defect)*

Sandstone 1.7 30×106 200-2600
Quartz 3 600-2800

Granite at 500
K

2.0 [3] 2.4×10−5 700 90
57 (Vp =
6.2 km/s, Vs =
3.6 km/s)

5 (Vs =
3.6 km/s)

0.0076 (Q =
200)

Basalt, gab-
bro, diabase

1.7-2.0 15×10−6 800-3000 40
79
(Vp = 7 km/s)

0.002 at T =
800 K (Q =
780)

Polycrystalline
olivine at
1200 K

2.0 [2] 3.8×10−5[1] 251 [1] 236 [1] 107.8 [1] 5.8 [1]
0.0465 (Q =
34)

Plexiglas 0.19

3 × (3.9 −
7.2) × 10−5

(linear expan-
sion coeff.
cited)= (1.2−
2.2)×10−4

190 470 2960

0.007-0.02
at T = 300
K (Q =
80−220)

* ∆K ≡ KA−KI
KI

= KAT α2

ρCp
, where KA and KI are the adiabatic and isothermal elastic moduli. The corresponding thermoelastic Q:

Q≈ π/2∆K .

** Where K is not available, we estimate it from seismic Vp: K = ρ
(
V 2

p − 4
3V 2

s
)
≈ 5

9ρV 2
p .
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