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Abstract 

Several extensions of the concept of Acoustic Impedance to oblique incidence exist and 
are known as Elastic Impedances (EI). These quantities are constructed by heuristic integrations 
of reflectivity series but still involve approximations and do not represent a unique medium 
property. Nevertheless, for unambiguous interpretation, it is desirable to have an EI that would: 1) 
be a mechanical property of the medium and 2) yield exact reflection coefficients at all angles of 
incidence. Here, such a definition is given for P and/or SV wave propagation in an arbitrary 
isotropic medium. The exact elastic P/SV impedance is a matrix quantity and represents the 
differential operator relating the stress and strain boundary conditions. With the use of the matrix 
form of the reflectivity problem, no approximations are required for accurate modeling of 
reflection (P/P and SV/SV) and mode-conversion (P/SV and SV/P) coefficients at all angles and 
for any contrasts in elastic properties. The matrix EI can be computed from real well logs and 
inverted from ray-parameter dependent seismic reflectivity. Known limiting cases of P- and S-
wave acoustic impedances are accurately reproduced, and the approach also allows the extension 
of the concept of impedance to attenuative medium. The matrix impedance readily lends itself for 
inversion, with uncertainties typical of the standard acoustic-impedance inversion problem. 

 

Introduction 

Impedance is the key quantity used for characterizing reflection and transmission of 
seismic waves. For P waves at normal incidence, the Acoustic Impedance (AI) is usually taken as 
the product of density () and velocity (V) of the medium 

VAI  .      (1) 

Several extensions of this formula to oblique incidence were proposed. In these 
extensions, the impedance was invariably constructed as a quantity Z such that the reflection 
coefficient r1,2 from a boundary of two media was solely determined by the ratio of their 
impedances, z2,1 = Z2/Z1 
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Consequently, impedance is always defined with an uncertainty of an arbitrary scalar, which is 
usually selected so that Z reduces to AI at normal incidence. 

All impedance measures proposed to date attempt achieving two goals: 1) inverting the 
series of reflectivity values (equation 2) for a Z-series and 2) giving Z the sense of an intrinsic 
elastic property of the propagation medium. The first of these goals is easily achieved by using 
one of the following approximations for impedance contrast 
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and recursive multiplication 

1,
1

0 
 kk

i

k
i zZZ .      (4) 

However, the second goal is unachievable in such inversion, because elastic P/SV wave reflection 
and conversion cannot be rigorously described by a single scalar parameter. In addition, the 
reflectivity-series integration (equations 3 and 4) may be unstable (e.g., Francis, 1997) and often 
requires regularization. Reflectivities only constrain the ratios of impedances across each 
interface, and cumulative values of Z resulting from multiplying hundreds of factors in equation 4 
may drift in complex ways depending on the approximations, data and numerical noise, and also 
the algorithms employed. This drift may include variations with depth and incidence angles, 
which may be difficult to control. The variety of the proposed forms of Elastic Impedance (EI) 
outlined in the following section illustrates this uncertainty. 

The debate of the differences between the various EI approximations may lie largely 
within the uncertainties of such ad hoc integration of reflectivities. All of the existing EI 
expressions rely on assumed parameter correlations and do not correspond well to real 
observation environments, in which deviations from background trends are typically of primary 
interest. Thus, the two fundamental problems of such approaches are: 1) deriving the impedance 
from reflectivities, whereas it should actually arise from the boundary conditions and only lead to 
reflectivities (e.g., VerWest et al., 2000), and 2) in treating the EI as a scalar quantity, whereas for 
the welded-interface boundary conditions, the impedance should be a matrix incorporating both P 
and SV waves simultaneously. 

Nevertheless, in this paper, I show that reflectivity at any incidence angle can be readily 
presented in a rigorous impedance form by emphasizing the two physical principles above. 
Although the new expression for EI and the reflectivity values (equation 2) are of matrix form, 
they still can be easily numerically evaluated and inverted, similarly to the existing heuristic EI’s 
and AI. Because of its rigorous nature, the new matrix EI is free from any assumptions and 
approximations, leads to accurate reflection/conversion equations at all incidence angles, and is 
unambiguously related to mechanical properties of the medium. 

A striking general consequence from the realization that EI should be an elastic property 
of the rock is that along with the ray parameter, it should depend on only two elastic parameters 
(for example, products k and k of the Lamé parameters  and  and the vertical wavenumber k) 
and not three (VP, VS, and ) as in all existing EI definitions. The density () is a part of neither 
the Hooke’s law nor the boundary conditions. Clearly, finding a two-parameter dependence from 
the data should be a much easier task, and the results should also be more reliable and portable. 
Below, after a brief discussion of what appears to be the common weaknesses of the existing EI 
measures, I present a new, “substantive” EI definition, in the form of a matrix function of AI and 
the VS/VP ratio, and compare it to several known impedance solutions. 

Existing EI measures 

Connolly (1999) introduced the initial concept of EI which is currently in broad use. His 
EI describes the dependence of P-wave reflectivity on the incidence angle,  
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where VP and VS are the P- and S-wave velocities, respectively,  is the density, and K = (VS/VP)2, 
which is assumed to be constant across the reflecting boundary. However, this K = const 
assumption is difficult to justify in cases of practical interest. Another serious problem with EI is 
that its dimensionality does not correspond to impedance and varies with .  Variation ranges of 
EI with  also strongly depend on the measurement units (e.g., VerWest et al., 2000), and 
therefore it cannot be considered a constitutive property of the medium.  

To work around the dimensionality problem, Whitcombe (2002) proposed a normalized 
EI, which is the EI divided by itself measured at some reference level and scaled by AI   
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Martins (2006) further extended this concept to the cases of weak anisotropy, and Mallick (2007) 
studied its stability in respect to tuning and the effects of multiples. Whitcombe et al. (2002) also 
proposed an extended EI by modifying certain functional dependencies in two-term EI in 
expression 6 and designing empirical rules for highlight the contributions of fluids and lithology 
in it. However, despite its many useful applications, EI still hardly corresponds to a mechanical 
property of the medium, first because of is relative character and also because the integration of 
reflectivity is carried out along non-physical paths of constant .  

To relax the above limitations, Ma (2003) proposed the Ray-path EI (RI), which was 
constructed by integrating the reflectivity along an actual reflection path with ray parameter 
(moveout) p 
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In this expression, the VS/VP ratio no longer needed to be constant; however, the density was 
taken to be functionally related to VS, = 0VS

 (Potter et al., 1998), and small conversion angles 
were also assumed, pVS << 1. Santos and Tygel (2004) gave another form of RI 
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At pVS << 1, these approximations are equivalent and correspond to Bortfeld’s (1961) formula, 
but they are differently extrapolated to greater p values. VerWest et al. (2000) and VerWest 
(2004) also proposed two similar RI forms, such as 
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Note that although closer than EI to describing the reflectivity along an actual reflection 
path, the RI in forms 7-9 still falls short of representing an intrinsic rock property. Indefinite 
integrals included in the derivation of RI (e.g., Santos and Tygel, 2004; VerWest, 2004) contain 
arbitrary integration constants, which may be ray-parameter-dependent. Therefore, similarly to 
the normalized EI in equation 6, expressions 7-9 only approximate the impedance ratios between 
different depth levels, for example: 
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in which a path with  = const is expected to be followed. Without such a trend provided by at 
least one reference state, parameter   in EI/RI equations 6-10 is undefined. 

In summary, the existing EI and RI definitions provide good (particularly RI) 
descriptions of relative P-wave reflectivity properties between different depth levels. However, 
these descriptions are limited to stringent assumptions about correlated VP, VS, and  variations 
which may be difficult to justify. Thus, it appears that it would be highly desirable to find a truly 
intrinsic rock property that could accurately describe both P- and S-wave reflectivities and could 
be invertible and interpretable in the same way as impedance normally is. Such a property is 
proposed in the following sections. 

P/SV impedance matrix 

To derive the general P/SV impedance, first consider an elastic wavefield in the vicinity 
of a planar boundary separating two half-spaces with uniform elastic properties (Figure 1). From 
two components of displacement, the non-zero components of strain can be expressed as 
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From the Hooke’s law, the stress tensor is given by ij = ij+2ij, where  and  are the 
Lamé constants, and ij is the Kronecker symbol.  Therefore, the two components of traction on 
the boundary between the two half-spaces are 
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From this expression, the impedance operator relating the displacement components to stress can 
be defined as 
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As shown below, the impedance matrix Z
~

allows solving both the stress and 

displacement boundary conditions in terms of Z
~

 alone, similarly to equation 2. In the absence of 
attenuation, this impedance is reactive (i.e., imaginary), which makes it a correct analog to the 
electric-line impedance. However, in acoustics, the conventional definition of impedance is a 
real-valued scalar quantity Z, which is the ratio of normal stress to particle velocity (Aki and 
Richards, 2002). Such impedance could be described as “resistive,” which is a somewhat poor 
analogy for propagating-wave impedance.  Nevertheless, in a harmonic wave [uz,x exp(-it)], 
the velocity is proportional to the displacement, and therefore the conventional impedance matrix  

Z can be defined as a frequency-scaled “reactive” Z
~
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This operator reduces to the standard impedance formulas in several known limiting cases given 
below.  

To examine some examples, consider a plane wave incident on a boundary between two 
elastic media, with wave displacement uz,x  exp(-it+ikcosz+iksinx), where k is the 
wavenumber , and  is the incidence angle (Figure 1). In this case, the impedance operator 
reduces to matrix multiplication 
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where  = /. Note that density () is implicitly present in this equation through the dependence 
of k on . Also, from Snell’s law and stationarity of the wave equation, parameters  = ksin and 
are common to all converted and reflected wave modes.  

For a P-wave at normal incidence (), the impedance given by equation 15 becomes 
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whose first element corresponds to the conventional P-wave impedance. If attenuation is present 
(i.e., uz,x  exp(-it+ikz-kz/2QP)), equation 13 yields (Morozov, 2009) 
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In the acoustic limit ( = 0) with no attenuation but at an arbitrary incidence angle  
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Since in this case, ux/uz = tan, the conventional (scalar) acoustic impedance represents the ratio 
of pressure to velocity perpendicular to the boundary 
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which is the well-known AI expression valid at all angles (Brekhovskikh, 1980). 

The simple matrix impedance formulas 13 and 14 rigorously cover all cases of P/SV 
wave propagation at any incidence angles and even for non-planar waves. Therefore, 
approximations 5-9 may be unnecessary; however, in order to utilize the matrix forms of Z, we 
need to see how the reflectivity formula 2 changes in the case of oblique, P/SV wave incidence. 
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P/SV reflectivity in matrix form 

Here, I use the scattering-matrix approach by Aki and Richards (2002) to show that all 
formulas for reflection and transmission coefficients can be expressed in terms of impedance 
matrices of the type given by equation 13. Consider an incident, reflected, and transmitted P 
and/or SV-wave fields (subscripts ‘inc’, ‘r’ and ‘t’, respectively), with the following components 
of displacements 
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where subscripts m = 1 and 2, indicate the corresponding medium (Figure 1). In these 
expressions, the downward and upward “propagator” matrices Um,+(z,x,t) and Um,-(z,x,t)  for these 
plane waves are 
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according to the standard P- and S-wave polarity convention (Aki and Richards, 2002). Here, kP,S 

denote the P- and S-wave wavenumbers, respectively. From equations 12 and 13, the 
corresponding stress components for each of these waves (labeled ‘w’) become 
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On the welded boundary of the two media, both components of the displacement and 
stress are continuous 
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which can be written as 
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with 
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where all matrices are taken at z=0, and subscripts m = 1 and 2 indicate the elastic parameters in 
the corresponding media. The solution to equations 24 is  
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where the reflectivity and transmission matrices are, respectively 
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These formulas give the “propagator” form (e.g., Aki and Richards, 2002) for all reflection, 
transmission, and mode conversion amplitudes for both P- and S- incident waves from medium 1. 

Considering that matrices Sm± are proportional to the corresponding ,mZ , note the 

similarity of equations 27-28 to the normal-incidence reflectivity by equation 2. This expression 
is independent of the ambiguity of impedance scaling, and it is the same for both “reactive” and 
“resistive” impedance definitions in equations 13 and 14. 

Despite their matrix form, reflectivity formulas 26 are only slightly more difficult to 
evaluate numerically (for example, by using Matlab) than expression 2. At the same time, the 
effort invested in 22 matrix computations pays off by removal of all assumptions and 
approximations, differences between the various EI models, and the relative and path-dependent 
character of EI. Approximate solutions may still arise from insufficient data when, for example, 
S-wave or density information is not available. However, in such cases, the approximations can 
still be made explicit, such as the use of the Gardners’ formula for density or assuming a depth-
variant VP/VS, as in equations 5-9. Such approximations can be analyzed and justified separately, 
and not embedded in the EI definition. 

Inversion 

As a complete description of the medium transmission/reflection properties, the 
impedance matrix is a function of all three of its elastic parameters: , , and (equation 15, with 
 entering through the k/ ratio).  If we have a matrix R combining all three recorded reflected 
and converted amplitudes from both P- and S- incident waves, equation 27 can be inverted for 
S2,+ (in terms of its parameters 2, 2, and 2) 
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yielding a recursive matrix inversion formula for Z
~

 that extends the scalar equation 4.  

However, all P, S, and P/S wave reflection coefficients are rarely available, and therefore 
the formal matrix inverse 29 at oblique incidence may be impractical. A practical inversion 
procedure for Z consists of solving the forward equations 27 given the recorded P/P, SV/SV, 
and/or P/SV reflection amplitudes at several values of ray parameter for the elastic parameters of 
the medium. Therefore, generally, Z can be derived by (, , ) (LMR) inversion. 

Three-parameter LMR curve fitting may be prone of instabilities (e.g., Mallick, 2007), 
and the impedance property Z is particularly valuable for indicating the stable combinations of 
these parameters. Thus, equation 15 shows that Z is a function of k, ’, and . The sensitivity of 
P/P reflection amplitudes to the values of  in the second medium is quite weak below ~35 
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incidence, and for P/SV amplitudes – below ~25 (Figure 2). Note that using the correct Snell’s 
law for the values of P, S, 2 (Figure 1) is not important in the expressions for Z at such angles. 
Therefore, Z is principally a function of parameters k and , or equivalently, of AI and . For 
the medium beneath the reflecting boundary, these parameters can be estimated by fitting the 
reflection amplitudes at a range of incidence angles. For example, considering the two amplitudes 
shown by gray dots in Figure 2a as P/P reflectivity data, we can reconstruct the AI and ’ values 
of the underlying layer (Figure 3), and thereby reproduce the entire Z matrix. Notably, this matrix 
would also describe the effects of P/SV, SV/SV, and SV/P reflections and transmissions. Also, 
from the shapes of data misfit contours in Figure 3, note that a ~1% uncertainty in AI corresponds 
to ~10% uncertainty in , with a moderate positive correlation of these uncertainties. 

Thus, similarly to the AI, matrix P/SV impedance is invertible from seismic data but 
requires AVO information. Similarly to AI, the single-boundary inversion step shown in Figure 3 
should be continued recursively, producing a matrix EI column from AVO or P/S reflectivity 
data. Similarly to AI, this recursive inverse should suffer from instabilities caused by the lack of 
low-frequency information, noise, and also by the fundamental scale ambiguity of the impedance. 
Note that the inversion is conducted synchronously for all ray parameter values, i.e., the entire 
reflection/conversion AVO curves are inverted for Z at each depth level. To correlate the results 
to a well log, one would need to estimate its AI and  values and compute the components of Z 
(equation 15) instead of using the approximate formulas 5-9. More detail and examples of such 
inversion using real data will be given elsewhere. 

Elastic impedance 

In this section, we compare the EI in matrix forms 13-15 to the approximate forms 5-9. 
Matrix Z in equation 15 depends on the velocity/density structure and on the direction of wave 
propagation, but its effects on different types of waves are different. For a P-wave with 
wavenumber k = /VP propagating at incidence angle , Z becomes (equations 15, 21) 
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and for an incident S wave (k = /VS) 
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Compared to the approximate P-wave RI (equations 5-9), the dependencies of the 
resulting matrix EI components on  are quite simple (see Figure 4). Note that the vertical-
component part Zzz,z is generally close to RI at all angles (Figure 4), although all components of Z 
are needed to accurately describe the reflection AVO effects.  Comparison to EI attributes 
(equations 5 and 6) cannot be made, because they do not represent single-medium properties. 
Figure 5 shows logs of the components of matrix Z (equation 30) computed in a real well from 
CREWES Blackfoot project (CREWES, 2004). Note the similarity of the first component (Zzz,z) to 
other impedance measures, and the differences between the four components of Z. 

Another interesting scalar impedance-type property can be constructed from matrix Z 
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(see equation 19) 
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Its meaning is the ratio of the normal traction to normal displacement in the incident P wave 
alone, i.e. what could be called the “P-wave-alone” impedance, i.e., the response of the boundary 
to the incident P wave. This quantity corresponds to the acoustic impedance at all incidence 
angles. As one can see from Figure 4, in the typical velocity ratio VS/Vp = 0.59, ZP it only weakly 
varies with incidence angles, and the faster reduction of RI’s with angles is due to the effects of 
P/SV wave conversions. However, note that this impedance still should not be used for generation 
of reflectivity series as in equations 5-8. These series can be accurately reproduced by using the 
complete matrix Z. 

It is important to realize that the meaning of the matrix EI (Z) proposed here is different 
from those suggested previously (equations 5-9). The approximate impedances in formulas 5-9 
resulted from heuristic summations of P/P reflectivity series derived from approximations of the 
reflectivity equations (Aki and Richards, 2002) and slightly different approximations for time 
integrals. Transmission losses were ignored, mode conversions only included through P/P AVO 
effects, small-amplitude and in some cases small-angle limits were considered, and stringent 
constraints were imposed in order to perform the integrations. However, integration of reflectivity 
series (equations 3 and 4) is well-known for its instability (e.g., Francis, 1997), and therefore the 
differences between the existing EI forms may reflect the biases accumulated during the 
reflectivity discretization and integration. VerWest et al. (2000) also noted the differences from 
using the Aki and Richards (2002) and Bortfeld (1961) approximations during such integration.  

By contrast, the matrix impedance (equation 30) arises from considerations of the 
boundary conditions in a single medium, and not from integrating a reflectivity series. Elements 
of this matrix arise from a simple differential operator relating the stress in the wavefield to its P- 
and S-wave displacements (or velocities, equation 13), and this operator is closely related to the 
elastic parameters of the medium. It depends on neither any specific wave type nor its 
propagation history through other layers.  Due to its matrix form, it incorporates all effects of 
P/SV reflections and conversions, and yields the correct acoustic limit at all incidence angles. 
Therefore, the matrix EI above should provide the most unambiguous information for interpreting 
elastic rock properties from seismic inversion. 

Conclusions 

P/SV wave impedance of an elastic medium can be uniquely described as a matrix 
quantity depending on its mechanical parameters and angle of incidence. Reflection, 
transmission, and conversion coefficients at arbitrary angles are related to matrix-impedance 
contrasts similarly to the acoustic cases. When using the matrix form of the reflectivity problem, 
no approximations are required for accurate modeling of reflection coefficients at all angles. 
Known cases of P- and S-wave acoustic impedance are accurately reproduced at all incidence 
angles, and the approach also allows the extension of the concept of impedance to attenuative 
medium. The matrix impedance readily lends itself for inversion, with uncertainties typical of the 
standard acoustic-impedance inversion problem. 
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Figures 

 

Figure 1. Model geometry and notation. Black arrows indicate P waves, gray arrows – SV 

waves. Thick arrows indicate positive displacement directions. Factors dependent on z 

in the expressions for P- and SV-wave displacements are shown. Second subscripts in k 

and  indicate the propagation media. 
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Figure 2. a) PP and PS reflection coefficients in shale over wet- and gas-sand models from 

VerWest (2004). Model parameters are: VP = 2.77 km/s, VS = 1.52 km/s, and  = 2.29 

g/cm3 for shale, VP = 3.85 km/s, VS = 2.24 km/s, and  = 2.34 g/ cm3 for wet sand, and 

VP = 3.08 km/s, VS = 1.98 km/s, and  = 2.14 g/ cm3 for gas sand. The average angle is 

defined as a = asin[p(VP1+VP2)] (VerWest, 2004). Black lines show the exact solutions; 

solid gray lines give solutions with P- and S-wave refracted angles  ( in equation 15) 

in layer 2 (sand) replaced with their average values, and dashed gray lines correspond 

to taken the same as in the shale layer. Gray dots in plot a) indicate the points used in 

inversion (Figure 3).  
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Figure 3. Illustration of inversion for Z at a single boundary in shale over gas-sand model. 

Axes correspond to relative deviations of AI and  from the true values in the gas-sand 

layer. Contours correspond to RMS misfits from two points marked with circles in 

Figure 2a, using the exact Z (black lines in Figure 2a) and drawn at intervals of 0.001. 

Black, dark-, and light-gray triangles correspond to solutions obtained by using the 

corresponding  dependencies shown in Figure 2a. Gray dashed line indicates the 

direction of correlated uncertainties in AI and ��� 

 

 

 

 

 

 



Published in: GEOPHYSICS,VOL. 75, NO. 2, 2010; P. C7–C13, doi: 10.1190/1.3318268 

14 

 

 

Figure 4. Comparison of the approximate forms of RI for different  values (gray lines, 

equations 7-8, labeled) to the elements of P-wave matrix EI (black lines, equation 30, 

labeled) for an elastic medium with VP = 3400 m/s, VS = 2000 m/s, and  = 2.28 g/cm3. 

Dotted line shows the ZP value in equation 32. 
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Figure 5. Velocity, density, AI, normalized EI (equation 6), RI (equation 8), and components 

of matrix Z impedance (equation 30) at 30 incidence angle in a well from Blackfoot 

project (CREWES, 2004). For EI log, normalization constants VP0, VS0, and 0 are 

selected at the top of the log. Impedance units are km/s·g/cm3. In EI, RI, and Zzz,z plots, 

AI log is also shown in gray for comparison. Density log was not edited, resulting in 

spurious impedance lows between 1500 – 1600 m depths.  

 

 


