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Abstract 

In several recent papers, we explained the frequency dependence of the apparent 
seismic quality-factor (Q) observed in many studies by the effects of geometrical 
attenuation (GA), which was defined as the zero-frequency limit of the temporal 
attenuation coefficient. In particular, GA was found to be positive for most waves 
traveling within the lithosphere. Here, we present three theoretical models illustrating the 
origin of such GA, and investigate the causes of its preferential positive values. In 
addition, we discuss the physical basis and limitations of both the conventional and new 
attenuation models. 

For waves in media with slowly varying properties, GA is caused by variations of 
wavefront curvatures, which can be both positive (for defocusing) and negative (for 
focusing). In media with velocity/density contrasts, incoherent reflectivity leads to GA 
coefficients which are proportional to the mean squared reflectivity and always positive. 
For “coherent” reflectivity, the GA is approximately zero, and the attenuation process can 
be described by the concept of “scattering Q.” However, the true meaning of this 
parameter is in describing the mean reflectivity within the medium and not that of the 
traditional resonator quality factor known in mechanics. 

The general conclusion from these models is that non-zero and often positive 
levels of GA are common in realistic, heterogeneous media both observationally and 
theoretically. When transformed into the conventional Q-factor form, such positive GA 
leads to Q values quickly increasing with frequency. These predictions show that the 
positive frequency dependent Q observed in many datasets may represent artifacts of the 
transformations of the attenuation coefficients into Q. 
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1. Introduction 

In several recent papers [Morozov, 2008, 2009a, b, 2010a–d; hereafter referred to 
as M08, M09a, b, and M10a–d, respectively], we argued that the conventional 
description of seismic attenuation using the quality factor of the medium (denoted Q) 
relies on theoretical conjectures, analogies, and assumptions which are insufficiently 
based on the fundamental principles of mechanics. In consequence, the resulting Q 
models may be prone to spurious frequency dependences and lead to overly complex and 
ambiguous interpretations. One general manifestation of such excessive complexity may 
be in Q values quickly increasing with frequency, which is commonly reported, 
particularly in coda and total-energy studies (e.g., Aki, 1980). As suggested in M09b, 
such increases may often be dictated by the very definition of Q used in seismology, and 
not related to any rheological or scattering properties of the medium. Instead of using the 
Q paradigm, we suggested returning to another well-known description, which is the 
attenuation coefficient in either its spatial () or temporal () forms. While removing the 
assumptions and uncertainties involved in the definition of Q, this description provides a 
simple and reliable basis for data analysis [M08, M10a] and offers several far-reaching 
empirical generalizations [M10b]. 

The key message of the aforementioned papers was that for many wave types 
(short-and long-period surface and body waves, coda, Pn, Lg, and even the whole-Earth 
free oscillations), the observed variations of Q with frequency typically correspond to 
piecewise-linear dependences of the attenuation-coefficient, (f) (Figure 1). The intercept 
values of these dependences, denoted    |f0, are often positive in lithospheric 
measurements and correlate with tectonic types and ages of the crust [Figure 1; M08]. 
Slopes of these linear (f) segments lead to a new, “effective” quality-factor type 
measure, Qe = [(d/df)/, which is usually frequency-independent and significantly 
higher than the conventional Q0 = Q(1 Hz) (Figure 1). Thus, instead of the conventional 
pair of parameters Q0 and  in the power law Q(f) = Q0f

, the new description uses 
parameters  and Qe in the linear dependence: 

 
e

f f
Q

   .                                                             (1) 

Although also subject to some subtleties [M10a], the basic interpretation of parameters  
and Qe is nevertheless much more straightforward than that of Q0 and . This 
interpretation can be summarized as follows:  

1) The zero-frequency limit, is principally responsible for the effects of the 
“structure,” i.e., for ray bending, lithospheric reflections and conversions, multi-
pathing, and scattering not accounted for by the background model, which is used 
for geometrical or other types of corrections performed prior to the attenuation 
measurements. Because of this meaning, we often refer to parameter as 
"geometrical" [M08, M09a], although in certain cases, frequency-dependent 
geometrical spreading may cause complications to this terminology [M10a]. 

2) Parameters  or Qe describe the effects of anelastic attenuation and small-scale, 
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random scattering. In relation to  above, we call these attenuation parameters 
“non-geometrical.” 

Notably, for at least short-period coda waves,  can be modeled from totally independent, 
structural information by using numerical waveform modeling [Morozov et al., 2008]. By 
contrast, the non-geometrical parameters are unrelated to the structure, but they can be 
recognized by the characteristic increase of the attenuation coefficient with frequency. 

In many datasets, the observed frequency-dependent values of Q ~ f, with  
approaching and sometimes exceeding 1, can be explained by the presence of a 
significant positive “geometrical attenuation,”  > 0 (Figure 1) [M08, M10a,b]. 
Therefore, it appears that  > 0 could be due to some common physical properties of the 
lithosphere. In the present paper, we offer some theoretical evidence for the potential 
causes of such values of . We show that positive geometrical attenuation can be caused 
by: 1) variations of wavefront curvatures during refraction in smoothly-varying media, 
and 2) by incoherent reflectivity along the wave-propagation paths. In the conventional, 
Q-based paradigm, such  values could also be attributed to a strongly frequency-
dependent “scattering Q,” although such terminology could be misleading because of its 
attributing the deterministic effects of the structure to a Q [M09a, M10a]. However, in 
the third example below, we also consider a case of short-scale, “coherent” reflectivity, 
for which a kind of “scattering Q” becomes meaningful and frequency-independent. 

Despite its simplicity and productive use, model (1) recently met with significant 
criticism [Xie and Fehler, 2009; Xie, 2010], which even led to a special forum in Pure 
and Applied Geophysics [Mitchell, 2010]. The critique touched upon a broad range of 
subjects but focused primarily on the perceived lack of a physical meaning of expression 
(1), and particularly of its geometrical part, . The theoretical examples developed in 
Section 3 answer these questions by explaining the physical rationale of the functional 
form (1) and illustrating the physical mechanisms and approximations involved in the 
concepts of  and . These examples also show the practical uses and limitations of 
approximation (1). For readers interested in the fundamentals of the concept of Q and in 
further detail of this extensive debate, additional comments are given in Appendix A. 
Although not critical for the present article, this discussion helps in understanding the 
physics of the attenuation coefficient and its relation to the conventional seismic 
attenuation model and viscoelasticity.  

2. Apparent and intrinsic attenuation coefficients 

The observed (apparent) temporal attenuation coefficient, denoted here, was 
heuristically inferred in M08 and M10a,b by analyzing the seismic path factor within 
several frequency bands: 

0P G P , where tP e   .                                               (2) 

In these expressions, P denotes the seismic amplitude corrected for the source and 
receiver effects, and G0 is the reference geometrical spreading, such as G0(t) = t-1 used in 
many local-coda studies. Factor P is the residual of P remaining after the geometrical 
correction, and e-t represents the perturbation-theory approximation for this P. This 
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approximation means that G0 is normalized so that at t = 0, P = G0, and for t > 0, P is 
predicted by the scattering theory [M10a]. Expression (2) represents the starting point of 
most attenuation measurements, in which  is directly measured from either the time-
domain logarithmic decrements of the amplitudes, or from the widths of the spectral 
peaks near resonances (Figure 2).  

Unfortunately,  is rarely studied by itself but usually converted into the 
“apparent Q” by assuming a specific form for its frequency-dependence [e.g., Aki, 1980]: 

   
f

f
Q f

  , and accordingly,    
f

Q f
f




 .                            (3) 

Note that Q is never measured directly but is only derived from  by using the second 
expression (3). Although appearing only as a simple scaling, the above transformation 
has a deep implication: it assumes that   0 when f  0. However, this assumption is 
too restrictive and inaccurate in most practical cases. Transformation (3) assumes that 
attenuation occurs proportionally to the number of oscillation cycles and is meaningful 
only for purely oscillatory processes, such as shown in Figure 2. Nevertheless, in reality, 
 often includes contributions from ray bending, reflectivity, multi-pathing, scattering, 
and other effects of the structure, for which |f0 ≠ 0. In such cases, transformation (3) 
results in Q(f) values that are nearly proportional to f, which is often observed.  

To avoid the tendency of Q to spuriously increase with frequency, we do not use 
the restrictive model for Q(f) in Equation (3) and view (f) as an arbitrary function. In 
empirical data analysis, it is useful to start by isolating its zero-frequency limit  in (f) 
[M08]:  

   f f f    .                                                     (4) 

Compared to Equation (3), the only difference of this form is in allowing  to be non-
zero. For  = 0, Equations (3) and (4) are equivalent, which once again emphasizes the 
character of the assumption on which approximation (3) is based. 

The dimensionless parameter  in Equation (3) can generally be frequency-
dependent; however, from several data examples [M08, M09a, M10a,b] and numerical 
modeling of the seismic coda [Morozov et al., 2008] and mantle Love waves, it turns out 
to be frequency-independent for many wave types and frequency bands. The only waves 
for which the measured  is clearly frequency-dependent are the free oscillations of the 
Earth, and even for them, (f) appears to break into only two linear branches of the form 
(3) [Figure 1; M10a]. For comparisons to the conventional terminology,  can be 
transformed into an “effective” quality factor Qe = / used in expression (1) [M08]. 

 Note that the apparent  is also closely related to parameter t* often used in body-
wave attenuation studies [e.g., Der and Lees, 1985] as  = ft*/t. This parameter is 
usually interpreted as Q-1 accumulated along the ray path: 

* 1

path

t Q dt  ,                                                                (5) 
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where t is the propagation time. Because of its affinity to Q-1, t* also exhibits the same 
instability with respect to the background geometrical-spreading correction and a similar 
variation with frequency. For example, the values of t* for body P-waves decrease from 
~1 s for long-period waves to ~0.2 s at short periods [Der and Lees, 1985], which may 
also be a spurious (apparent) effect related to the use of the Q-type model of attenuation. 
In more detail, we discuss this point elsewhere. However, because the frequency-
dependent Q-1 in seismology is essentially used as a proxy for  (Equation 3),  can also 
be represented by a path average of the corresponding “intrinsic attenuation coefficient,” 
i [M10b]: 


path

idt
 1

.                                                            (6) 

This new quantity combines local variations of geometrical spreading, scattering, and 
anelastic attenuation within the medium. Of these three factors, the anelastic attenuation 
is the one that definitely requires a frequency-dependent i (compare to Equation 3). As 
argued in detail in M10a, the other two factors can only be separated by making 
additional simplifications, such as assuming a frequency-independent residual 
geometrical spreading. The difficulty of their separation is related to the fundamental 
ambiguity in the definitions of the geometrical spreading and scattering. However, in 
many practical cases including the present paper, separation of these quantities is not 
required, and i can be treated as a single medium property. 

The most important observation from Equations (2) and (6) is that for traveling 
waves, P represents a path integral, which can be rendered in either the temporal or 
spatial forms:  

exp expi i

path path

P dt ds  
   

         
   
  ,                                        (7) 

where s is the ray path length, and i and i are is the corresponding spatial and temporal 
intrinsic attenuation coefficients. This shows that the variations of geometrical spreading, 
scattering, and attenuation have similar characters and are accumulated over the wave 
propagation paths. The exponential form possesses important general properties and 
similarities to ray-, wave-, and quantum-field mechanics.  

3. Models for geometrical attenuation 

In this section, we consider three theoretical examples illustrating the path-
integral forms (7) for  and showing what mechanisms could create the linear frequency 
dependences of  (Equation 3). As we will see, the residual geometrical spreading i and 
the corresponding frequency-independent i occur in several end-member cases:  

1) Refraction in a medium with smoothly varying velocities. This example shows 
that i is also related to the variations of wavefront curvature (i.e., to perturbations 
of the traditional geometrical spreading). 



6 

2) Incoherent normal-incidence reflectivity, corresponding to large numbers of 
sparse reflections occurring during long propagation paths. In this case, i is 
proportional to the gradient of the acoustic impedance. 

3) Short-scale reflectivity, with random but “coordinated” (alternating) reflectivity at 
scale-lengths much shorter than the length of the incident wave. In this case, the 
reflectivity becomes “coherent” at f  0, and consequently i = 0. This example is 
studied numerically, as in Richards and Menke [1983]. 

All these cases relate to the elastic processes of refraction or reflectivity, which fall under 
the category of “scattering,” or more generally, “geometrical” attenuation processes 
discussed in M08 and M10a. Our specific goal here is to illustrate the origins of the 
geometrical parameter i in theoretically-tractable cases. The physics of anelastic 
attenuation is not discussed in these examples, and its effects are simply incorporated by 
the additional factor exp(-ift).  

3.1 Variations of wavefront curvature 

The dynamic ray theory [Červený, 2001] illustrates the origins of the exponential 
form (7) for the attenuation coefficient. In this theory, the wave-amplitude variation is 
described by the ray propagator , which in logarithmic form is [Equation 4.4.86 in 
Červený, 2001]: 

     1
1

ln , ln , ,
N

N i i
i

R S R Q Q Q 


       .                                   (8) 

Here, S is the source, R is the receiver, and Qi and iQ are the incidence and emergence 

points at the i-th interface, respectively (Figure 3), and 

     1 1, ln , ,i i i i i iQ Q Q Q Q Q 
     

    .                                       (9) 

In our notation (Equation 7), P corresponds to (R,S), and  1,i iQ Q    equal to id  , 

where i is the intrinsic attenuation coefficient, and the integral is taken from point Qi-1 to 
Qi along the ray. 

In the absence of interfaces and caustics, the geometrical spreading is caused by 
the variations in the waveform curvature (Figure 3). In the dynamic ray theory, this 
curvature is denoted H and measured by the trace of the wavefront curvature matrix, K: 
H = ½ tr K. Matrix K consists of second derivatives of the travel-time field T with 
respect to the wavefront-orthonormal coordinates yk [Equation 4.6.15 in Červený, 2001]: 

2

ij
i j

T
K V

y y




 
,                                                              (10) 
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where V is the wave velocity. Wavefront curvature H is related to the ray-theoretical 
geometrical spreading, G0  L-1, by the following differential equation [Equations 
4.10.28–29 in Červený, 2001]: 

1 dL
H L

ds
 ,                                                                (11) 

where L is the geometrical-spreading denominator, and s is the ray arc length. The 
solution to this equation relating L(R) at the receiver to L(S) at the source is  

     exp
R

S
L R L S Hds  ,                                             (12) 

which has the expected exponential path-integral form of Equation (7). Ratio 
G = L(S)/L(R) represents the geometrical spreading factor, which equals 

 0 exp iG P s   . In the presence of anelastic attenuation given by parameter i, the 

full path factor becomes: 

 
 0

1
exp

R
i

S

L S ds
P f

G L R V

    
  ,                                         (13) 

and by writing this expression in terms of the intrinsic spatial attenuation coefficient, i, 

 exp
R

iS
P ds   ,                                                 (14) 

we see that i equals in this case: 

0ln i
i

i

H G f
V

    ,                                                 (15) 

with the corresponding relation for i = iV. These expressions show that for smoothly-
refracting waves, i contains a frequency-independent “geometrical” part (H-lnG0), 
which equals the difference of the actual wavefront curvature from the one predicted by 
the geometrical-spreading law selected as the background reference. 

3.2 Incoherent reflectivity 

To understand the relation of the in-situ attenuation coefficient to the properties of 
the medium, it is instructive to analyze its properties in a simple 1-D medium. For plane-
wave propagation, the theoretical geometrical-spreading factor G0 equals one; however, 
reflections within a heterogeneous medium cause deviations from this level. Because the 
transmission coefficients are completely described by the reflection-coefficient series, the 
geometrical part of the attenuation coefficient should also be related to reflectivity. In 
fact, as shown below, the geometrical attenuation coefficient equals half of the average 
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squared reflection coefficient. 

To begin, consider a boundary between two layers of acoustic impedances Zj-1 
and Zj (Figure 4). The specific expression for impedance depends on the local properties 
of the medium, wave type, and the angle of its incidence on the boundary. From [M10c], 
in the presence of attenuation, the complex-valued acoustic impedance for a P- or S wave 
at normal incidence is 

 1
2 i

i
Z V

Q


 
  

 
,                                                       (16) 

where , V, and Qi
-1 are the mass density, wave velocity, and parameter of anelastic 

attenuation, respectively. Note that although we generally argue that Q cannot be 
considered as a medium property, this parameter is retained here for convenience of 
comparison to the current terminology. Such use of anelastic Q is possible because we 
are considering an otherwise uniform background, in which the geometrical spreading is 
accurately known, a single wave type is used, and therefore Q appears in its specific, 
phenomenological sense of a plane-wave amplitude decay parameter [M09b]. 

Considering for simplicity the normal-incidence case and denoting the 
displacement in the incident wave by u, the displacements in the reflected and transmitted 
waves become (-Riu) and Tiu, respectively (Figure 4), where, Ri is the reflection 
coefficient,  

1

1

j j
j

j j

Z Z
R

Z Z








,                                                             (17) 

and Tj = 1– Rj is the transmission coefficient, 

1

1

2 j
j

j j

Z
T

Z Z







.                                                            (18) 

The corresponding transmission coefficient for energy is 

 
12

, 2
1 1

4j j j
E j j

j j j

Z Z Z
T T

Z Z Z



 

 


,                                           (19) 

and the energy reflection coefficient equals RE,j = 1 – TE,j. 

For small impedance contrasts, the above coefficients are: 

 1
ln

2j jR Z ,                                                          (20) 
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 1
1 ln

2j jT Z  ,                                                        (21) 

  2 2

,

1
1 ln 1

4E j j jT Z R    ,                                          (22) 

where j(X) denotes the contrast in quantity X across the j-th boundary. Switching to a 
continuous Z(t) description, the impedance contrasts over an infinitesimal propagation 
time interval [t,t+t] can be considered small, and therefore from Equation (22), 

2 2

1

ln
t tN

E j
j t

T R r d







     ,                                        (23) 

where r(t) is the root-mean square (RMS) density of reflectivity. 

Equation (23) only gives the transmission loss caused by reflections on the 
boundaries passed by the wave between propagation times t and t + t. The anelastic 
medium attenuation over the same time interval leads to an additional energy decay: 

2
ln 2

t t t t

E i

t t

T r d f d
 

  
 

    ,                                         (24) 

where i is the non-geometrical attenuation factor. 

If the transmitted waves interfere incoherently, the energy transmission 
coefficients combine multiplicatively over propagation time, and therefore their 
logarithms are additive. For a wave traversing N boundaries in a finite propagation time t, 
the energy density E(t) is (Figure 4) 

0 , 0 ,
11

exp ln
N N

N E j E j
jj

E E T E T


 
   

 
 ,                                       (25) 

or in terms of the continuous reflectivity function, r(t), 

    2

0

0 exp 2
t

iE t E r f d


 


         
                                      (26) 

This expression shows that the logarithm of the transmitted energy loss is given by a path 
integral, 

    2

0

ln ln 0 2
t

iE t E r f d       ,                                 (27) 

and consequently the temporal attenuation coefficient equals 
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  2
ln1

2 2i i

d E t r
f

dt
     .                                           (28) 

The corresponding spatial attenuation coefficient equals  = /V: 

22
spatia

2 2
li i

i

rr
f

V V

 


   .                                           (29) 

Equations (28) and (29) also show the difference between the temporally- and spatially-
averaged RMS reflectivities, which are denoted by r and rspatial, respectively.  

Thus, for incoherent 1-D acoustic-wave propagation, the geometrical attenuation 
coefficient equals half the corresponding path-averaged squared reflectivity. As path-
averaged properties,  and  can be evaluated over finite propagation-time intervals, and 
therefore they can also be time-dependent.  

Note that when i = 0, the resulting i or i are associated with geometrical 
attenuation, which is the zero-frequency forward scattering in this case. In the 
approximation considered here (normal incidence and absence of multiple reflections), 
these geometrical  or  are independent of the frequency and the incident wavelength.  

If multiple reflections are present, frequency-dependent effects (tuning) should 
arise even in the geometrical limit. Such effects should likely have the form of resonance 
peaks rather than a continuous trend with frequency. Such undulations of the recorded 
amplitudes with frequency (“spectral scalloping”) on top of the linear trend of (f) 
(Equation 4) are commonly observed, as shown in several data examples recently 
reviewed in [M08, M10a, b]. 

3.3 Coherent reflectivity 

The preceding example assumed incoherent interference of scattered arrivals, 
which occurs at all scales, but particularly when the scatterers are large and spaced at 
large distances compared to the incident wavelength. In this section, we consider the 
opposite limit of scatterers that are small and relatively closely spaced. In this case, 
destructive interference of scattered waves occurs, and the attenuation coefficient 
exhibits strong frequency dependence. For simplicity, we again consider the 1-D case, in 
which scattering reduces to normal-incidence reflectivity. Originally, this example was 
analyzed by Richards and Menke [1983], who demonstrated the frequency-dependent 
effects of scattering (Figure 5) and presented them in terms of the “scattering Q”. Let us 
briefly review this important example from a somewhat different angle, and in particular 
look closely at the decay of the spectral amplitudes with time.  

During one-dimensional propagation, the wavefronts remain perfectly planar, and 
consequently the theoretical geometrical spreading equals exactly 1. Therefore, all 
perturbations of the wavefield are due to elastic scattering on the boundaries and 
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anelastic attenuation between them. In particular, scattering causes a part of the wave 
energy to reflect backward (which is often called “back-scattering”), and a part of it 
continues propagating forward while being delayed relative to the primary wave. This 
delayed part of the propagating wavefield is called “forward-scattered” (Figure 6). From 
numerical simulations and real data, the initial wave pulse and both the forward- and 
back-scattered waves exhibit linear spectral variations, which increase with propagation 
time. Note that the senses of these variations are opposite for the initial pulse and back-
scattered and forward-scattered waves, whose high frequencies are progressively 
depleted and enhanced, respectively (Figure 5). 

Conventionally [for example, Richards and Menke, 1983], the relative changes in 
the spectra (Figure 5) are viewed as proportional to the number of wavelengths traveled 
by the incident wave, as in Equation (3). The resultant spectra are fit by using 
approximations of the form exp(-ft/Qs), and scattering is automatically viewed as 
analogous to the anelastic attenuation, for which the corresponding spectral amplitude 
decay is exp(-ft/Qi). However, as shown below, the proportionality to the number of 
wavelengths is incidental and only valid for coherent superposition of scattered waves. 
By contrast, for incoherent scattering, the attenuation tends to be independent of the 
incident wavelength. We therefore take a conservative view and use the Q-type 
parameters only for the frequency-dependent part of the attenuation coefficient.  

To derive the attenuation coefficient for the general case including both weak and 
strong, back- and forward scattering, note that the scattering problems for both the single- 
and multi-boundary cases (Figure 6) can be described equivalently by using the 
scattering-matrix formulation: 

1

,1 1

N

NN

u u

u u
 

 

   
   

   
T                                                       (30) 

where N = 2 for the 1-boundary case, and TN,1 is the transmission matrix relating the 
states on the right to those on the left in Figure 6. Here, u denotes the scalar wave 
amplitudes, waves with subscripts ‘+’ travel to the right, and those with ‘-‘ travel to the 
left. For a single interface, transmission matrix T2,1 combines coefficients (17) and (18) 
for forward- and backward wave propagation, 

   1 2 1 2 2 2
2,1

1 2 1 2 2 22

0 01
exp

0 02

Z Z Z Z r r

Z Z Z Z r rZ

        
                 

T I ,              (31) 

where the second equation corresponds to the small-reflectivity approximation, r2 is the 
reflectivity at the boundary, and I is the identity matrix. Alternately, the amplitudes of the 
waves traveling away from the boundary can be related to those incident on it from both 
sides: 



12 

1 1

,1NN N

u u

u u
 

 

   
   

   
S .                                                   (32) 

In this expression, SN,1 is called the scattering matrix. For N = 2, this matrix combines the 
reflection and transmission coefficients in both propagation directions: 

 2 1 2
2,1

1 1 21 2

21

2

Z Z Z

Z Z ZZ Z

 
    

S .                                  (33) 

In the absence of anelastic attenuation, the elastic energy is preserved in the outgoing 
states: 

2 2 2 21 1
1 2

N NZ u u Z u u   
           

,                                       (34) 

for any N, and consequently the sum of powers of back- and forward-traveling waves is 
constant at any frequency. 

For N–1 interfaces, matrix TN,1 is a product of wave-mode transformations on all 
boundaries: 

,1 , 1
2 2

00
exp

00

ii

ii

iiN N
i

N i i ii
i i i

ree

ree







   
 

   
     

     
 T T ,                          (35) 

where i is the phase shift of the forward-traveling wave during its propagation in 
layer i. Let us denote the elements of this “propagator” matrix across the stack of all N–1 
boundaries (Figure 6b) by 

,1N

G G

G G

 

 

 
  
 

T .                                                   (36) 

The total reflection amplitude, 1u , can be found from the requirement that in the right-

hand side of Figure 6b, there should be no incoming wave traveling to the left: 

2 1 1 0u G u G u 
     ,                                              (37) 

and consequently 

1 1G
u u

G



   .                                                     (38a)  

This gives the total back-scattered amplitude. The total transmitted amplitude is therefore 
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1 1 1N G G
u G u G u G u

G

 
  

   

 
    

 
.                          (38b) 

Equation (38) can be used numerically to model the propagation of a long seismic 
wave through a stack of thin random layers. We use an example similar to that by 
Richards and Menke [1983], with 1000 layers of uncorrelated random velocities drawn 
from a Gaussian distribution with a mean of 3.0 km/s and standard deviation of 
0.25 km/s. The density is assumed constant. Using its scale-invariance, the impedance 
was normalized to a mean value of Z = 1, and the same value of impedance was placed at 
both ends of the random sequence (Figure 7). The travel-time within each layer is taken 
equal 1 s, which also gives the characteristic Nyquist frequency of fN = 0.5 Hz, relative to 
which all frequencies in the propagation process can be measured. 

 To investigate the time “history” of scattering, the impedance time series 
(Figure 7) was truncated at boundaries N = 2,3,…1000, and the remainders of the series 
were closed with a layer having Z = 1. The resulting variations of the reflected and 
transmitted wave intensities showed great fluctuations for the different statistical 
realizations of the impedance time series (Figure 8). However, after averaging over 
multiple realizations, the transmitted and reflected powers exhibited clear and mutually 
complementary exponential decays (Figure 9). By measuring the logarithmic decrements 
of these decays, temporal attenuation coefficients  were measured for selected 
normalized frequencies f/fN (Figure 10).  

The above procedure was performed for impedance contrasts spaced at regular 
time intervals ti = 1 s (Figure 7) and also repeated for another set of random impedance 
variations in which ti were randomly distributed. A log-normal distribution of ti was 
constructed so that the average <ti> also equaled 1 s. As expected, the resulting 
attenuation coefficients are similar for low frequencies f < 0.3fN. At f > 0.3fN, the 
attenuation in the random-ti sequence saturates at a constant level (black line in 
Figure 10), but the attenuation in the regularly-spaced sequence continues to increase to 
f ≈ 0.5fN, after which it decreases to near-zero at f ≈ fN. Such pattern resembles the well-
known “frequency folding” effect, which is characteristic for aliasing. As one can see, 
near f ≈ fN, phases of all reflections superimpose equivalently to the case of f ≈ 0, and the 
elastic attenuation drops to zero. Interestingly, the regularly-spaced impedance series 
exhibits a very narrow “notch” at f ≈ 0.5fN, at which the attenuation drops sharply 
because of tuning of the incident wave with the reflectivity sequence (Figure 10). 
However, neither aliasing nor tuning are present in the more realistic random-ti 
impedance series. 

In summary, the general behavior of the attenuation coefficient in 1-D random 
media can be described as follows: 

1) At near-zero frequencies, the attenuation is low ( ≈ 0) because of the destructive 
interference of the impedance contrasts; 
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2) Up to certain frequency f0,  increases almost linearly with f. In this range, 
“scattering Qs” can be meaningfully defined as Qs = f/. However, this Qs is not 
a true “quality factor” but only a measure of the slope of the (f) dependence, 
which is proportional to the mean stochastic reflection amplitude. The value of f0 
may generally depend on the statistics of the distribution of layer thicknesses and 
equals ~0.3fN in our example; 

3) At frequencies f > f0, the process of scattering becomes incoherent, and becomes 
frequency-independent.  

The value of f0 for a particular area may not be easy to determine; nevertheless, 
for an average sedimentary layering of ~10-cm thickness, f0 may be quite high (~40 kHz). 
Therefore, the entire seismological frequency band might lie within the “scattering Q” 
regime for such layering and exhibit a nearly frequency-independent Qs. However, at 
significantly lower frequencies and longer scale-lengths, the 1-D approximation 
considered here breaks down because of the effects of the structure (i.e., geometrical 
attenuation), the attenuation coefficient saturates (Figure 10), and an apparent frequency-
dependent Qs is observed. Thus, separation of the deterministic and stochastic wave-
propagation regimes is critical when considering scattering, but it cannot be done from 
coda data alone. 

4. Discussion and conclusions 

The above analysis shows that in the absence of anelastic attenuation, the 
resulting cumulative attenuation coefficient  is generally non-zero and depends on the 
refracting or reflecting structures within which the wave propagation takes place. For 
refraction, the zero-frequency (geometrical) attenuation coefficients can be positive 
(corresponding to defocusing) or negative (focusing). For incoherent reflectivity, the 
geometrical attenuation coefficients are always positive. For coherent reflections in 
which reflections of alternating polarities occur at scale-lengths significantly smaller than 
the incident wavelength, the geometrical factor is approximately zero, and reflectivity 
can be described by “scattering Q.” However, this last case is quite abstract, because an 
incoherent component should also be present in any random reflection sequence even in 
the short-scalelength case. 

Thus, the non-zero limit of   |f0 is common in both the data and theory. This 
limit is explained by inaccurate knowledge and variability of the background structure. In 
an empirical, ad hoc interpretation staying strictly within the paradigm of Q 
measurements, this limit can be attributed to a “scattering Q” increasing with frequency: 
Qs = f/. However, such Q-factor terminology would ignore most of other information 
known about the structure, such as the existence of velocity gradients, velocity/density 
contrasts, bending rays, reflections, and mode conversions. On the other hand, the 
concept of  correctly captures these factors in the form of the geometrical spreading 
associated with the structure. 

The two-parameter attenuation model (1) with constant  and Qe considered here 
represents only a first-order, perturbation-theory approximation. The theoretical 



15 

examples in Section 3 indicate several limitations of this approximation, which consist in 
a requirement for a relatively accurate reference model G0, weak interactions, and finite 
propagation times. These examples also show how these limitations can be measured and 
quantified. By contrast, as shown Appendix A, the conventional Q-based paradigm 
presents many more problems which are difficult to assess even at the level of the basic 
physical theory. 

For unambiguous interpretation of seismic attenuation data, it is therefore 
important to use the attenuation-coefficient description, in which the geometrical, 
scattering, and anelastic-attenuation effects are treated adequately and combined in the 
temporal intrinsic attenuation coefficient, i. Compared to this model, the emphasis on 
the frequency-dependent quality-factor may lead to interpretations that are overly 
complex but unrelated to the available structural information.  
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Figure captions 

Figure 1. Summary of observed (f) dependences for Rayleigh waves and short-period 
body, Lg, Pn, and coda waves. “Reduced” values of ( - f/1000) are shown, so 
that the linear dependences corresponding to Qe = 1000 appear horizontal. 
Typical ranges of Qe, and  levels discriminating between the stable and active 
tectonic regimes are indicated by lines and gray boxes, respectively. Modified 
from M10b, with permission from Springer. 

 
Figure 2. Definition of the attenuation coefficient, , and quality factor, Q, for an 

oscillatory process in: (a) frequency-domain, (b) time-domain. In a steady-state 
oscillation, the attenuation coefficient measures the width of the resonance peak 

at 1 2  of the maximum amplitude, and Q measures its relative width: f1/2 = / 
=  f0/Q. Example with Q = 10 is shown. 

 
Figure 3. Ray propagator in a layered medium (Equation 8). Geometrical spreading is 

related to the ratio of wavefront curvatures (gray dashed lines) at the receiver (R) 
and source (S). 

 
Figure 4. One-dimensional plane-wave reflection-transmission problem. Solid lines are 

reflectors, dashed lines – incident-wave wavefronts at times t and t + t, 
respectively. Multiple reflections are ignored. 

 
Figure 5. Transmission responses of a simulated 100-boundary sequence [modified after 

Richards and Menke, 1983]: (a) transmitted record resulting from a single initial 
pulse; (b) power spectrum of its initial part (main pulse with early forward 
scattering, (c) spectrum of the later forward-scattered waves.  

 
Figure 6. One-dimensional scattering problem: (a) on a single boundary, (b) on a random 

sequence of boundaries. 
 
Figure 7. Random Gaussian distribution of impedance corresponding to mean velocity of 

3.0 km/s and standard deviation of 0.25 km/s. The impedance is normalized to a 
mean value of Z = 1.0. 

 
Figure 8. Wave attenuation in three statistical realizations of impedance time series 

(Figure 7) for frequency f = 0.2fN. Black and gray lines show the transmitted and 
reflected power, respectively. 

 
Figure 9. Transmitted (black) and reflected (gray) power averaged over 100 statistical 

realizations as in Figure 8. 

 
Figure 10. Frequency dependence of attenuation coefficient  in 1-D propagation. Gray: 

propagation in a sequence of layers with equal travel times; black: propagation in 
layers with travel-times distributed according to a log-normal distribution. Dashed 
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line corresponds to the level of “scattering Q” equal 170. 

 Figure A1. Apparent attenuation for four spherically-symmetric global Rayleigh-wave 
models: a) in Q(f) form, b) in (f) form. Model labels: DE [Dalton and Ekström, 
2006], PREM [Dziewonski and Anderson, 1981], QL6 [Durek and Ekström, 
1996], and QM1 [Widmer et al., 1991]. Note that (f) for PREM is near linear 
across the entire 50–250-s period band. 
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Figure 1. Summary of observed (f) dependences for Rayleigh waves and short-period 

body, Lg, Pn, and coda waves. “Reduced” values of ( - f/1000) are shown, so 
that the linear dependences corresponding to Qe = 1000 appear horizontal. 
Typical ranges of Qe, and  levels discriminating between the stable and active 
tectonic regimes are indicated by lines and gray boxes, respectively. Modified 
from M10b, with permission from Springer. 
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Figure 2. Definition of the attenuation coefficient, , and quality factor, Q, for an 
oscillatory process in: (a) frequency-domain, (b) time-domain. In a steady-state 
oscillation, the attenuation coefficient measures the width of the resonance peak 

at 1 2  of the maximum amplitude, and Q measures its relative width: f1/2 = / 
=  f0/Q. Example with Q = 10 is shown. 

 
 

 
Figure 3. Ray propagator in a layered medium (Equation 8). Geometrical spreading is 

related to the ratio of wavefront curvatures (gray dashed lines) at the receiver (R) 
and source (S). 

 
Figure 4. One-dimensional plane-wave reflection-transmission problem. Solid lines are 

reflectors, dashed lines – incident-wave wavefronts at times t and t + t, 
respectively. Multiple reflections are ignored. 
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Figure 5. Transmission responses of a simulated 100-boundary sequence [modified after 

Richards and Menke, 1983]: (a) transmitted record resulting from a single initial 
pulse; (b) power spectrum of its initial part (main pulse with early forward 
scattering, (c) spectrum of the later forward-scattered waves.  

 
 
 
 

 
Figure 6. One-dimensional scattering problem: (a) on a single boundary, (b) on a random 

sequence of boundaries. 
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Figure 7. Random Gaussian distribution of impedance corresponding to mean velocity of 

3.0 km/s and standard deviation of 0.25 km/s. The impedance is normalized to a 
mean value of Z = 1.0. 

 
 
 

 
Figure 8. Wave attenuation in three statistical realizations of impedance time series 

(Figure 7) for frequency f = 0.2fN. Black and gray lines show the transmitted and 
reflected power, respectively. 

 
 

 

 
Figure 9. Transmitted (black) and reflected (gray) power averaged over 100 statistical 

realizations as in Figure 8. 
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Figure 10. Frequency dependence of attenuation coefficient  in 1-D propagation. Gray: 

propagation in a sequence of layers with equal travel times; black: propagation in 
layers with travel-times distributed according to a log-normal distribution. Dashed 
line corresponds to the level of “scattering Q” equal 170. 
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Figure A1. Apparent attenuation for four spherically-symmetric global Rayleigh-wave 
models: a) in Q(f) form, b) in (f) form. Model labels: DE [Dalton and Ekström, 
2006], PREM [Dziewonski and Anderson, 1981], QL6 [Durek and Ekström, 
1996], and QM1 [Widmer et al., 1991]. Note that (f) for PREM is near linear 
across the entire 50–250-s period band. 
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Appendix A: Physical basis of the (, Qe) model 

Even if taken purely empirically, the (, Qe) model (1) leads to two important 
general observations: 

A) the geometrical spreading (GS) is typically not known accurately enough in 
order to measure the frequency dependence of Q; 

B)  GS variations can and should be estimated from the data, and it represents a 
most valuable attribute for interpretation. 

These observations were illustrated on a number of datasets from ~500-s to ~100-Hz 
frequency bands and led to major reconsideration of several interpretations [M08, M09a, 
b, M10a–c]. Nevertheless, Xie and Fehler [2009] and Xie [2010, hereafter X10] argue 
that this literally cannot be done and present an extensive critique of this model. Their 
critique follows several lines, from the functional form of Equation (1) and data fitting to 
the physical meaning of geometrical attenuation and its relation to the viscoelastic theory 
and laboratory observations. At the same time, these authors do not address the key 
points A)–B) above and appear to misunderstand or misrepresent a number of other key 
points of the (f) approach. It is therefore important to compare the conventional and new 
model (1) in light of the argument by Xie and Fehler [2009] and X10.  

A.1 Data fitting and criteria for model validity  

It is known [e.g., M08, M10a, X10] that seismic attenuation data can often be fit 
by using either the frequency-dependent Q(f)Q0f

 (i.e., (f) = f1-/Q0) or linear (f) 
dependences of the type (1. In M08, a mapping between parameters (, Qe) and (Q0, ) 
was derived, which was also sensitive to the observation frequency band.  

With the existing datasets, two-parameter frequency dependencies are likely all 
that can be reliably constrained, and model (1) can be viewed as exploiting this fact by 
using a Maclaurin series in f [M08]. The traditional power-law (f) = f1-/Q0 is another 
way to fit the (f) data with two parameters, although in a far less intuitive fashion. From 
the equivalence of these forms in data fitting, X10 argues that the observations of linear 
(f) dependencies “do not invalidate” the power-law Q(f). Indeed, Equation (1) cannot 
invalidate the power-law or any other form of Q(f); nevertheless, in view of its fitting the 
data well (in fact, often within broader frequency ranges than the power law [M08, 
M10a]), we can ask why a Q(f) would really be required. This remains the key question, 
because it appears that the frequency-dependent Q is only motivated by the viscoelastic 
theory.  

The true reasons for using one or another attenuation model are not in the data fit 
but in their correspondence to the physics of wave propagation [M10a]. As noted below, 
for viscoelasticity and Q, such correspondence can be seriously questioned. On the other 
hand, rigorous physical theories of waves in heterogeneous and attenuative media exist 
and do not require the use of an in situ Q [Biot, 1962].   
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A.2 Measured versus assumed geometrical spreading 

The conventional practice of attenuation measurements defended by Xie and 
Fehler [2009] and X10 is based on the presumption that the GS can be established by 
mathematical modeling and does not need to be measured. In the notation of this paper, 
this means that  in Equations (2) and (4) can always be taken equal zero. However, a 
realistic GS is practically impossible to define mathematically. Any controlled-source 
data section shows that “multi-pathing” (i.e., reflections, refractions, and mode 
conversions) is so pervasive that the wavefronts that could be followed for GS prediction 
are completely absent. At the same time, despite the lack of tractable mathematical 
formulations, the GS certainly exists as a physical process, and its parameters can be 
measured as described in M08, M10a, and M10b. In practical observations, we only have 
the frequency-dependent attenuation coefficient to go by, and therefore we can only 
approximate the residual GS as a frequency-independent part of the attenuation 
coefficient, which is given by parameter . For the same reason, the effects of small-scale 
scattering cannot be unambiguously separated from this residual GS [M08, M10a]. 

A.3 Physical basis of  

While criticizing the general idea of variable and measured GS, X10 focuses on 
the exponential form of the correction to G0:  

0 0
tG G G G e    ,                                                          (A1) 

which arises from Equation (2) with f = 0. Here, G is the true GS within the structure, G0 
is the assumed reference GS, and we call G the “residual GS” [M08, M10a].  According 
to X10, this functional form for G has “no physical basis,” principally because of its 
decaying too quickly at large times. However, as explained in M10a, Equation (2) 
represents a common perturbation- (or scattering-) theory approximation, which only 
means that the rate of GS variation, G/t, is small and proportional to G. Similarly to all 
perturbation models, this approximation should not be used at the limit of t  , in 
which a diffusive (also called multiple-scattering) regime establishes. Maybe not 
appreciating this point, X10 applies the G = e-t correction to ~300-km distances 
(Appendices 1 and 2 in that paper), whereas it was only proposed for up to 50–70 km, 
and also uses exaggerated values of . If the limit t   is not considered, then both 
functional forms G0 and G0e

t in Equation (A1) are equally acceptable, because G0 itself 
is also only some ad hoc, or reference approximation for the GS. Other forms of GS 
corrections were also proposed in M10a, with the exponential model (A1) preferred 
because of its useful roots in the scattering approximation.  

It is clearly impossible to disprove the validity of approximation (A1), because 
the realistic baseline G0 has neither unique functional form nor definite physical 
meaning. In his Appendix 2, X10 offers an example of a “physically meaningful” GS of a 
wavefront spreading in a 2-D structure with a linear velocity gradient. However, this 
derivation is incorrect, because it assumes that the wavefront remains cylindrical in shape 
while propagating at different speeds in different directions. This once again illustrates 
the fundamental difficulty of purely mathematical approaches to GS.  
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A.4 Accuracy of perturbation-theory approximation 

Many studies show that the theoretical, GS approximation G0 is often inaccurate 
and affects the attenuation measurements, which is known as the “trade-off” of Q with 
the assumed model GS [e.g., Kinoshita, 1994]. In M08 and related papers, this notion of a 
model trade-off was viewed as unacceptable and the accuracy of G0 was tested 
quantitatively by using ansatz (1) as a single-parameter generalization of the 
conventional G0. The data showed that  were non-zero in most cases, and also that the 
entire frequency-dependent part of Q can be absorbed by a correction in . This 
correction also increases the values of Q (from Q0 to Qe) by as much as ~20–30 times 
[M08, M10a]. Thus, the zero-order approximation G0 is clearly insufficiently accurate for 
measuring the in situ Q. 

 The next important question is whether the first-order correction (1) to G0 is 
accurate enough. X10 correctly notes that from some datasets, || values turn out to be too 
large and violate the perturbation-theory criterion t|| << 1, where t is the characteristic 
observation time [M10a]. However, from such large  values, X10 makes a paradoxical 
conclusions that one should therefore use G0 (i.e., set  = 0) and that the attenuation 
measurements “cannot be improved” by a better GS model. On the contrary, large | only 
means that G0 is too inaccurate, and a correction is required. With the use of a more 
accurate G0, such as the numeric models of M10a, the values of  would reduce, and 
approximation (1) would enter the range of its formal validity. 

Finally, Q represents only a second-order effect which can only be constrained 
when both G0 and the residual GS () are accounted for. It appears that realistically, this 
can only be done based on the frequency dependence of , i.e., by measuring Qe from the 
spectral slopes of seismic amplitudes. This can only be done by assuming that the 
residual GS is frequency independent [M10a]. 

A.5 Monotony of apparent Q(f) dependencies 

In a peculiar but instructive argument that deserves some discussion, X10 finds a 
“fundamental contradiction” of the (f) model (1) in the fact that it only predicts apparent 
Q = f/ values monotonously varying with frequency. X10 points out that among the 
four major long-period Rayleigh-wave models, only PREM [Dziewonski and Anderson, 
1981] shows a monotonous increase of the apparent Q with f (Figure A1a). However, all 
four models cannot be correct simultaneously, and they differ among themselves to about 
the same extent as from PREM.  Therefore, all of these models do not have to comply 
with model (1). At the same time, note that PREM shows an almost perfectly linear (f) 
dependence within the entire frequency band (Figure A1b). 

As Figure 10 shows,  and even more so Q are not required to vary monotonously 
with frequency in model (1). Values  and Qe in Equations (1) and (4) are apparent 
quantities, and their constancy is just an empirical observation for certain wave types and 
frequency bands [M08]. At the same time, it is certainly remarkable that these quantities 
stay nearly constant within the same wave types [M10b and Section 3 here].   
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A.6 Lab observations of frequency-dependent Q 

An important argument in favor of a frequency-dependent Q and implicitly 
against the attenuation-coefficient model (1) comes from lab measurements using rock 
samples [X10]. Indeed, many lab observations at seismological frequencies, such as by 
Faul et al. [2004], yield values of Q increasing with frequencies. Nevertheless, one 
should not think that the GS does not exist in lab experiments, or that such measurements 
are unaffected by elastic structural effects. Quite oppositely, the transformation of the 
measured quantities, which are the resonance-peak widths or strain-stress phase delays, 
into the inferred “material Q” is most complex for lab data and relies on the most 
intricate models and numerous corrections [Bourbié et al., 1987]. These models cause 
pronounced effects in the elastic limit (see Section 3) and play the role of the GS. The 
examples in Section 3 of this paper illustrate three types of such effects quantitatively. 

A.7 Physical basis of conventional attenuation models 

Ironically, the physical basis of the conventional GS and Q models (such as   
G0  t- and Q = Q0f

, respectively) is much more difficult to establish than that of the 
perturbation-theory formulas (1) and (4). Both of these models only arise in overly 
simplified theories, such as the approximations of the Earth’s lithosphere as a uniform 
and isotropic half-space with a flat boundary commonly used in local-coda studies [e.g., 
Aki, 1980]. The Q0f

 power law appears to be suggested by the elementary “equivalent 
linear solid” models [e.g., Carcione, 2007], but at the same time, multiple solids are 
usually superimposed to allow almost arbitrary frequency dependencies of Q [Liu et al., 
1976]. The only definite constraint on possible (f) = f/Q dependencies from the power-
law Q model consists in |f0 = 0. However, such a constraint is not physically justified 
and is commonly violated in observations [M08, M09a, M10]. 

It appears that the reason for the popularity of Q in attenuation models is not in its 
physical validity but in simplicity, flexibility, and practical convenience. Once we 
postulate that virtually the same quantity, namely Q-1, exists as both the material and 
observed (apparent) property, the theory becomes greatly simplified. The correspondence 
principle [Aki and Richards, 2002] allows treating the in situ Q-1/2 as a complex 
argument of the velocity, which dramatically simplifies modeling and inversion. The 
frequency dependence of the in situ Q provides a very flexible parameterization which 
allows fitting and modeling the data across broad frequency bands. However, all this is 
achieved by departing from the mechanical description of the medium, which means that 
such a Q may be no more than a heuristic mathematical model. 

A.8 In situ Q and viscoelasticity 

The viscoelastic theory is often used for an implicit conceptual support for a 
frequency-dependent in situ Q of the propagating medium [X10]. This is a very extensive 
subject that cannot be fully addressed here; however, two observations regarding this 
support were made in M09b. First, note that the quality factor was introduced in 
seismology from an intuitive analogy with acoustic or mechanical resonators 
[Knopoff, 1964] but it is still not the type of quantity that can be easily associated with a 
point within the medium. The difficulty of defining a “material Q” can be seen from the 
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fact that there exist many factors responsible for elastic-energy dissipation, such as the 
rock-matrix properties, grain shapes, pore volumes, shapes and connectivity, fractures, 
fluids, and various dielectric and piezoelectric properties. Most of these factors are 
unrelated to the elastic moduli and cannot be lumped into the only two values of Q and 
Q used in the traditional seismic viscoelasticity. Thus, the viscoelastic model is far too 
simple to describe the real Earth materials. 

Second, the viscoelastic model is also too general and permissive. It only 
reproduces the formal convolutional relationships between the strain and stress within a 
wave but does not constrain the mechanism of energy dissipation. However, nearly any 
linear process can be presented as “viscoelastic” in this sense. For example, the ordinary 
Newtonian mechanics can be described by convolutional integrals relating the particle 

position, x(t), to the force-rate history,  f t : 

     
t

x t J t f d  


   ,                                                 (A2) 

where J(t) can be called the “retarded compliance function:” 

    2

2

t
J t t

m


 ,                                                              (A3) 

m is the mass, and (t) is the Heavyside step function. However, such a picture does not 
replace the second Newton’s law,    x t f t m , and should not be interpreted literally, 

as some “memory” inherent in particle motion. Note the similarity of Equation (A2) to 
the viscoelastic relation of the strain, , to stress-rate history, [Dahlen and 
Tromp, 1998]:  

     
t

t J t d    


   .                                                   (A4) 

 Another fundamental problem in applying the viscoelasticity to seismology is the 
absence of a unique definition for the elastic energy [e.g., Carcione, 2007]. This leads to 
the absence of the traditional Hamiltonian dynamic principle, which is standard in 
mechanics. Among its practical manifestations, this problem leads, for example, to an 
incorrect complex argument of the acoustic impedance in the presence of attenuation 
[M10c]. 

 


