
 

 

Thermoelastic relaxation in cylindrical material specimens 

Here, let us estimate the thermoelastic relaxation in uniform but grainy materials   

and cylindrical bodies. We will follow Landau and Lifshitz, 1986, §35. If the heat could 

not transfer during deformation, the adiabatic temperature perturbation due to dilatational 

deformation  would be: 
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However, in the presence of heat exchange, temperature variations are lower and denoted 

by T   below. Once this quantity is determined, the mechanical-energy dissipation 

becomes:  
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Depending of the frequency, the values of T   and of the volume V contributing to dissipation 

integral (2) vary. Let us consider two practical limits. 

1) Low-frequency limit 2h   

  At low frequencies, the entire grain volume participates in heat transfer, and the 

temperature T within the grain is approximately uniform. Considering harmonic 

deformation (for example, cos t  ) the average heat production rate by deformation 

per unit volume equals 0 0V VT C T C   . The heat dissipated by heat conduction is 

therefore: 2div T T h    q . By equating these two quantities, we see that 

temperature variation is proportional to frequency and strain (as 0T     in (1)): 
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This means that temperature variation is proportional to the strain rate. From (2), the 

energy dissipation rate is: 
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This dissipation rate is proportional to the squared strain rate and can therefore be 

described by an equivalent Newtonian viscosity, thermo: 
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where  
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For polycrystalline materials (apparently metals), Landau and Lifshitz (1986) mention 

that this quantity is much larger than the viscosity of the component crystallites. For 

Plexiglas and polycrystalline olivine, its values are given in Table 1. Note that this 

viscosity quickly increases with grain size. For olivine at mantle conditions, this viscosity 

is very large, causing unrealistically high damping ( tan 1  ;Table 1). This shows that 

the low-frequency limit is likely never reached in seismic observations. By contrast, for 

“fine-grained” Plexiglas at room temperature, the low-frequency thermoelastic viscosity 

is low ( tan 0.01   at ~1Hz; Table 1). 

From the expression for thermoelastic viscosity, the corresponding phase lags are:  
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2) Intermediate-frequency case 2h c h    

Let us try estimating the parameters of thermoelastic relaxation in cylindrical 

specimens under harmonic axial compression/tension. Two regimes need to be 

considered: 

1) The material is grainy with grain size h, and the dissipation occurs near 

grain boundaries; 

2) The material is uniform, and dissipation occurs near the surface of the 

cylinder, where it is in contact with fluid or gas (argon in Jackson’s 

experiments). 

In both of the above cases, for periodic loading/unloading, temperature variations 

(1) occur within the bulk of material. Near the boundary (of a grain or the whole 

specimen), these anomalies decay within a thin boundary layer of thickness : 
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where  pC    is the thermometric conductivity. The temperature gradient within 

this layer is approximately 0T T   . The thermoelastic energy dissipation is then: 
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where V is the volume and  is its relative fraction affected by dissipation. For low-
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frequency forced oscillations, the total energy is approximately equal the elastic energy: 
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and therefore the damping coefficient is: 
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Finally, the phase lag equals: 
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For a cylinder of radius R and length L, parameter  equals 6 h   in the case 

1) above (dissipation on spherical grain boundaries) and 2 R   for case 2) 

(dissipation on the surface of the whole specimen). Therefore, the phase lag is: 
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Although the estimate of  above is order-of magnitude type and the value of h may be 

relatively uncertain, we still keep geometrical factors 6 and 2 in these expressions. 

In either of these cases, the frequency of the absorption peak, 0, can be estimated 

from (8) matching the characteristic dimension of the problem:  

                                      0 2h
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                                      0 2R

   for a uniform cylinder.  (14b) 

For two typical experimental cases, the above quantities are summarized in 

Table 1. As this Table shows, spectral peaks in Plexiglas can be explained by a finely 

grained structure. By contrast, it appears that when working with small samples of 

olivine aggregates at high temperature, the dissipation likely occurs through the surface 

of the whole specimens. 

Estimating grain size 

It looks that grain size can be estimated by making the low-frequency and high-

frequency expressions (7) and (13) meet at the frequency of absorption peak, 0. 

Although none of these equations are valid at the vicinity of point  = 0, this 

extrapolation seems to produce reasonable estimates, and it also creates a continuous 

tan() curve. Equating (7) and (13) at frequency 0, we obtain, after some trivial 

algebra: 
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These values are shown as “grain sizes” in Table 1. 
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Table 1. Thermoelastic dissipation models for two typical experiments with cylindrical 

material specimens. 

Material Plexiglas Olivine 

T, K 300 1200 

Dimensions R = 7.6 cm, L = 25 cm R = 0.5 cm, L = 6 cm 

Frequency of spectral peak, f0, Hz 2.5 1/1000 (1000-s period, 
assumed) 

K, GPa 2.96  107.8 

kg/m3 1190 3251 

Cp, J/K/kg 1470 1236 

, W/m/K 0.19 2.0 

, K-1 1510-5 3.810-5 

Testing frequency, f, Hz 5.0 1/20 (20-sec period) 

General thermoelastic parameters: 

mm 0.06 1.2 

 0.011 0.046 

Qmin 137 34 

Higher-frequency limit: 

for uniform cylinder, Hz 5.510-4 7.410-3 

for grainy cylinder, Hz 0.84 6.810-3 

tanfor uniform cylinder 1.810-5 0.023 

tanfor grainy cylinder 0.027 0.022 

Grain size, mm 0.15 16 

Low-frequency limit: 

thermo, Pas 7.1106 2.61012 

tan(characteristic values) 0.015 at 1 Hz 1.53 at 100-s period 

Comparing the low- and higher-frequency limits: 

tanthermo (0) 0.038 7.7 

 


